Browsing by Author "Correia, Iris"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Nutritive Value and Bioactivities of a Halophyte Edible Plant: Crithmum maritimum L. (Sea Fennel)Publication . Correia, Iris; Antunes, Madalena; Tecelão, Carla; Neves, Marta; Pires, Cristiana L.; Cruz, Pedro F.; Peralta, Claúdia C.; Pereira, Cidália D.; Reboredo, Fernando; Moreno, Maria João; Brito, Rui M. M.; Vaz, Daniela C.; Campos, Maria; Rodrigues, Maria JorgeCrithmum maritimum L. (sea fennel), an edible xerophyte of coastal habitats, is considered an emerging cash crop for biosaline agriculture due to its salt-tolerance ability and potential applications in the agri-food sector. Here, the nutritional value and bioactive properties of sea fennel are described. Sea fennel leaves, flowers, and schizocarps are composed of carbohydrates (>65%) followed by ash, proteins, and lipids. Sea fennel’s salty, succulent leaves are a source of omega-6 and omega-3 polyunsaturated fatty acids, especially linoleic acid. Extracts obtained from flowers and fruits/schizocarps are rich in antioxidants and polyphenols and show antimicrobial activity against Staphylococcus aureus, Staphylococcus epidermis, Candida albicans, and Candida parapsilosis. Plant material is particularly rich in sodium (Na) but also in other nutritionally relevant minerals, such as calcium (Ca), chlorine (Cl), potassium (K), phosphorus (P), and sulfur (S), beyond presenting a potential prebiotic effect on Lactobacillus bulgaricus and being nontoxic to human intestinal epithelial Caco-2 model cells, up to 1.0% (w/v). Hence, the rational use of sea fennel can bring nutrients, aroma, and flavor to culinary dishes while balancing microbiomes and contributing to expanding the shelf life of food products.
- Unveiling the potential of olive oil production residues as adsorbent materials for water treatment: A literature reviewPublication . Correia, Iris; Fernandes, Maria Eduarda; Marques-da-Silva, DorindaOlive oil is a nutritionally and economically valuable product whose global production has steadily increased, alongside the generation of large volumes of solid and liquid waste. Olive oil mill wastewater and solid residues such as olive pomace and olive stones have become major environmental concerns due to their high pollutant load. At the same time, these byproducts offer an opportunity: their valorization as low-cost, sustainable adsorbents for water treatment. Addressing this dual environmental challenge, this review provides a comprehensive and systematic synthesis of the current state of research on the use of olive oil production residues for water decontamination via adsorption. Specifically, the study maps the types of byproducts used, their target pollutants, removal efficiencies, and adsorption capacities. Unlike previous re- views, this work emphasizes studies that apply raw or minimally processed residues, as well as experiments conducted with real wastewater or under environmentally relevant conditions. The data are presented in a structured and comparative format, highlighting promising results and underexplored combinations. By identifying trends, gaps, and practical applications, this review contributes to advancing the development of circular economy-based, eco-friendly solutions for water pollution control and provides a valuable resource for future research and implementation.
