Publication
Solving boundary value problems on manifolds with a plane waves method
| datacite.subject.fos | Ciências Naturais::Matemáticas | |
| dc.contributor.author | Alves, Carlos J. S. | |
| dc.contributor.author | Antunes, Pedro R. S. | |
| dc.contributor.author | Martins, Nuno F. M. | |
| dc.contributor.author | Valtchev, Svilen S. | |
| dc.date.accessioned | 2025-09-16T17:32:14Z | |
| dc.date.available | 2025-09-16T17:32:14Z | |
| dc.date.issued | 2020-09 | |
| dc.description.abstract | In this paper we consider a plane waves method as a numerical technique for solving boundary value problems for linear partial differential equations on manifolds. In particular, the method is applied to the Helmholtz–Beltrami equations. We prove density results that justify the completeness of the plane waves space and justify the approximation of domain and boundary data. A-posteriori error estimates and numerical experiments show that this simple technique may be used to accurately solve boundary value problems on manifolds. | eng |
| dc.description.sponsorship | The financial support of the Portuguese Fundação para a Ciência e a Tecnologia (FCT), through the projects UIDB/04621/2020 and UIDP/04621/2020 of CEMAT/IST-ID (first, third and fourth author) and PTDC/MAT-CAL/4334/2014 (second author), is gratefully acknowledged. | |
| dc.identifier.citation | Carlos J.S. Alves, Pedro R.S. Antunes, Nuno F.M. Martins, Svilen S. Valtchev, Solving boundary value problems on manifolds with a plane waves method, Applied Mathematics Letters, Volume 107, 2020, 106426, ISSN 0893-9659, https://doi.org/10.1016/j.aml.2020.106426. | |
| dc.identifier.doi | 10.1016/j.aml.2020.106426 | |
| dc.identifier.issn | 0893-9659 | |
| dc.identifier.uri | http://hdl.handle.net/10400.8/14079 | |
| dc.language.iso | eng | |
| dc.peerreviewed | yes | |
| dc.publisher | Elsevier | |
| dc.relation | Center for Computational and Stochastic Mathematics | |
| dc.relation.hasversion | https://www.sciencedirect.com/science/article/pii/S0893965920301919?via%3Dihub | |
| dc.relation.ispartof | Applied Mathematics Letters | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | Meshfree method | |
| dc.subject | Plane waves method | |
| dc.subject | Helmholtz–Beltrami operator | |
| dc.subject | Manifolds | |
| dc.title | Solving boundary value problems on manifolds with a plane waves method | eng |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Center for Computational and Stochastic Mathematics | |
| oaire.awardURI | http://hdl.handle.net/10400.8/13612 | |
| oaire.citation.endPage | 8 | |
| oaire.citation.startPage | 1 | |
| oaire.citation.title | Applied Mathematics Letters | |
| oaire.citation.volume | 107 | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| person.familyName | Valtchev | |
| person.givenName | Svilen | |
| person.identifier.ciencia-id | AF1E-BD9D-A8D7 | |
| person.identifier.gsid | https://scholar.google.com/citations?user=MtxwhiUAAAAJ&hl=en | |
| person.identifier.orcid | 0000-0002-3474-2788 | |
| person.identifier.scopus-author-id | 8361079200 | |
| relation.isAuthorOfPublication | b6302c21-a0e4-4419-967b-0a1bac949132 | |
| relation.isAuthorOfPublication.latestForDiscovery | b6302c21-a0e4-4419-967b-0a1bac949132 | |
| relation.isProjectOfPublication | 9c9950fd-9a9f-4c8f-94eb-65df530d33e9 | |
| relation.isProjectOfPublication.latestForDiscovery | 9c9950fd-9a9f-4c8f-94eb-65df530d33e9 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Solving boundary value problems on manifolds with a plane waves method.pdf
- Size:
- 1.45 MB
- Format:
- Adobe Portable Document Format
- Description:
- In this paper we consider a plane waves method as a numerical technique for solving boundary value problems for linear partial differential equations on manifolds. In particular, the method is applied to the Helmholtz–Beltrami equations. We prove density results that justify the completeness of the plane waves space and justify the approximation of domain and boundary data. A-posteriori error estimates and numerical experiments show that this simple technique may be used to accurately solve boundary value problems on manifolds.
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.32 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
