Name: | Description: | Size: | Format: | |
---|---|---|---|---|
2.87 MB | Adobe PDF |
Abstract(s)
Medical imaging technology and applications are continuously evolving, dealing with images
of increasing spatial and temporal resolutions, which allow easier and more accurate
medical diagnosis. However, this increase in resolution demands a growing amount of
data to be stored and transmitted. Despite the high coding efficiency achieved by the
most recent image and video coding standards in lossy compression, they are not well
suited for quality-critical medical image compression where either near-lossless or lossless
coding is required.
In this dissertation, two different approaches to improve lossless coding of volumetric
medical images, such as Magnetic Resonance and Computed Tomography, were studied
and implemented using the latest standard High Efficiency Video Encoder (HEVC). In a
first approach, the use of geometric transformations to perform inter-slice prediction was
investigated.
For the second approach, a pixel-wise prediction technique, based on Least-Squares prediction,
that exploits inter-slice redundancy was proposed to extend the current HEVC
lossless tools. Experimental results show a bitrate reduction between 45% and 49%, when
compared with DICOM recommended encoders, and 13.7% when compared with standard
HEVC.
Description
Keywords
HEVC Lossless compression Medical imaging Geometric transformations Least-Squares prediction