Repository logo
 
Publication

Driving Behavior Classification Using a ConvLSTM

datacite.subject.fosEngenharia e Tecnologia
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
dc.contributor.authorPingo, Alberto
dc.contributor.authorCastro, João
dc.contributor.authorLoureiro, Paulo
dc.contributor.authorMendes, Silvio
dc.contributor.authorBernardino, Anabela
dc.contributor.authorMiragaia, Rolando
dc.contributor.authorHusyeva, Iryna
dc.date.accessioned2025-07-31T14:46:20Z
dc.date.available2025-07-31T14:46:20Z
dc.date.issued2025-05-01
dc.descriptionArticle number - 52
dc.descriptionThis article belongs to the Special Issue Autonomous Vehicles and Urban Evolution: Technological, Social and Environmental Perspectives
dc.description.abstractThis work explores the classification of driving behaviors using a hybrid deep learning model that combines Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) networks (ConvLSTM). Sensor data are collected from a smartphone application and undergo a preprocessing pipeline, including data normalization, labeling, and feature extraction, to enhance the model’s performance. By capturing temporal and spatial dependencies within driving patterns, the proposed ConvLSTM model effectively differentiates between normal and aggressive driving behaviors. The model is trained and evaluated against traditional stacked LSTM and Bidirectional LSTM (BiLSTM) architectures, demonstrating superior accuracy and robustness. Experimental results confirm that the preprocessing techniques improve classification performance, ensuring high reliability in driving behavior recognition. The novelty of this work lies in a simple data preprocessing methodology combined with the specific application scenario. By enhancing data quality before feeding it into the AI model, we improve classification accuracy and robustness. The proposed framework not only optimizes model performance but also demonstrates practical feasibility, making it a strong candidate for real-world deployment.eng
dc.description.sponsorshipThis work was supported by national funds through the Portuguese Foundation for Science and Technology (FCT) under the project UIDB/04524/2020.
dc.identifier.citationPingo, A.; Castro, J.; Loureiro, P.; Mendes, S.; Bernardino, A.; Miragaia, R.; Husyeva, I. Driving Behavior Classification Using a ConvLSTM. Future Transp. 2025, 5, 52. https://doi.org/10.3390/ futuretransp5020052
dc.identifier.doi10.3390/futuretransp5020052
dc.identifier.issn2673-7590
dc.identifier.urihttp://hdl.handle.net/10400.8/13823
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.relationResearch Center in Informatics and Communications
dc.relation.hasversionhttps://www.mdpi.com/2673-7590/5/2/52
dc.relation.ispartofFuture Transportation
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectArtificial intelligence
dc.subjectNeural networks
dc.subjectLSTM
dc.subjectRNN
dc.subjectDriving classification
dc.titleDriving Behavior Classification Using a ConvLSTMeng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Center in Informatics and Communications
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04524%2F2020/PT
oaire.citation.issue2
oaire.citation.titleFuture Transportation
oaire.citation.volume5
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameCastro
person.familyNameLoureiro
person.familyNameMendes
person.familyNameMoreira Bernardino
person.familyNameMiragaia
person.givenNameJoão
person.givenNamePaulo
person.givenNameSilvio
person.givenNameAnabela
person.givenNameRolando
person.identifier.ciencia-id1513-13E9-C8A6
person.identifier.ciencia-id081E-F3B8-316A
person.identifier.ciencia-idC712-E02E-0ED2
person.identifier.orcid0009-0003-4440-8120
person.identifier.orcid0000-0002-6711-1384
person.identifier.orcid0000-0002-1667-5745
person.identifier.orcid0000-0002-6561-5730
person.identifier.orcid0000-0003-4213-9302
person.identifier.ridGLS-3615-2022
person.identifier.scopus-author-id26422369700
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublication306bcac6-263c-4da1-bdb9-902cfdc0f1d1
relation.isAuthorOfPublication5ae39951-7dce-40d0-9bfc-6ab94e100d6c
relation.isAuthorOfPublicatione23cc83a-4e70-4088-a73d-075808bda28f
relation.isAuthorOfPublication375ebe15-f84c-46a4-a3d9-6e4935a92187
relation.isAuthorOfPublicationc3934650-8cbe-40cd-bb29-31c57baa49e2
relation.isAuthorOfPublication.latestForDiscovery306bcac6-263c-4da1-bdb9-902cfdc0f1d1
relation.isProjectOfPublication67435020-fe0d-4b46-be85-59ee3c6138c7
relation.isProjectOfPublication.latestForDiscovery67435020-fe0d-4b46-be85-59ee3c6138c7

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
futuretransp-05-00052.pdf
Size:
3.75 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: