Publication
Short-term load forecasting using information obtained from low voltage load profiles
datacite.subject.fos | Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática | |
datacite.subject.sdg | 07:Energias Renováveis e Acessíveis | |
datacite.subject.sdg | 09:Indústria, Inovação e Infraestruturas | |
datacite.subject.sdg | 11:Cidades e Comunidades Sustentáveis | |
dc.contributor.author | Sousa, João | |
dc.contributor.author | Pires Neves, Luís | |
dc.contributor.author | Humberto M.M. Jorge | |
dc.date.accessioned | 2025-06-06T16:10:31Z | |
dc.date.available | 2025-06-06T16:10:31Z | |
dc.date.issued | 2009-03 | |
dc.description | Article number 4915229, 2nd International Conference on Power Engineering, Energy and Electrical Drives, POWERENG 2009, 18 March 2009 through 20 March 2009 - Code 77128 | |
dc.description.abstract | Recent researches in load forecasting are quite often based on the use of neural networks in order to predict a specific variable (maximum demand, active electric power or hourly consumption) using past values of the same variable and other exogenous factors proved to influence the value being predicted. This work aims to explore different input patterns in neural networks incorporating information derived from load profiles of different consumers' classes. | eng |
dc.identifier.citation | J. M. C. Sousa, L. M. P. Neves and H. M. M. Jorge, "Short-term load forecasting using information obtained from low voltage load profiles," 2009 International Conference on Power Engineering, Energy and Electrical Drives, Lisbon, Portugal, 2009, pp. 655-660, doi: https://doi.org/10.1109/POWERENG.2009.4915229. | |
dc.identifier.doi | 10.1109/powereng.2009.4915229 | |
dc.identifier.eissn | 2155-5532 | |
dc.identifier.isbn | 978-1-4244-2290-6 | |
dc.identifier.issn | 2155-5516 | |
dc.identifier.uri | http://hdl.handle.net/10400.8/13181 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | IEEE Canada | |
dc.relation.hasversion | https://ieeexplore.ieee.org/document/4915229 | |
dc.relation.ispartof | 2009 International Conference on Power Engineering, Energy and Electrical Drives | |
dc.rights.uri | N/A | |
dc.subject | Load forecasting | |
dc.subject | Low voltage | |
dc.subject | Neural networks | |
dc.subject | Technology management | |
dc.subject | Autocorrelation | |
dc.subject | Weather forecasting | |
dc.subject | Artificial neural networks | |
dc.subject | Predictive models | |
dc.subject | Computer networks | |
dc.subject | Research and development | |
dc.title | Short-term load forecasting using information obtained from low voltage load profiles | eng |
dc.type | conference paper | |
dspace.entity.type | Publication | |
oaire.citation.conferenceDate | 2009-03 | |
oaire.citation.conferencePlace | Lisbon, Portugal | |
oaire.citation.endPage | 660 | |
oaire.citation.startPage | 655 | |
oaire.citation.title | International Conference on Power Engineering, Energy and Electrical Drives | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
person.familyName | Sousa | |
person.familyName | Pires Neves | |
person.givenName | João | |
person.givenName | Luís | |
person.identifier.ciencia-id | 591E-30D4-2C97 | |
person.identifier.orcid | 0000-0002-7567-4910 | |
person.identifier.orcid | 0000-0002-2600-5622 | |
person.identifier.scopus-author-id | 34977315800 | |
relation.isAuthorOfPublication | 7678f744-5e50-4458-8811-33e1fbc63013 | |
relation.isAuthorOfPublication | 5315d446-6d51-4d95-aeaa-72b6a44a4838 | |
relation.isAuthorOfPublication.latestForDiscovery | 7678f744-5e50-4458-8811-33e1fbc63013 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Short-term load forecasting using information obtained from low voltage load profiles.pdf
- Size:
- 189.99 KB
- Format:
- Adobe Portable Document Format
- Description:
- Recent researches in load forecasting are quite often based on the use of neural networks in order to predict a specific variable (maximum demand, active electric power or hourly consumption) using past values of the same variable and other exogenous factors proved to influence the value being predicted. This work aims to explore different input patterns in neural networks incorporating information derived from load profiles of different consumers' classes.
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.32 KB
- Format:
- Item-specific license agreed upon to submission
- Description: