Repository logo
 
Publication

Search-based test case generation for object-oriented Java software using strongly-typed genetic programming

dc.contributor.authorRibeiro, José Carlos Bregieiro
dc.date.accessioned2009-08-20T07:47:50Z
dc.date.available2009-08-20T07:47:50Z
dc.date.issued2008-07
dc.descriptionTexto integral não está disponível
dc.description.abstractIn evolutionary testing, meta-heuristic search techniques are used to generate high-quality test data. The focus of our on-going work is on employing evolutionary algorithms for the structural unit-testing of object-oriented Java programs. Test cases are evolved using the Strongly-Typed Genetic Programming technique. Test data quality evaluation includes instrumenting the test object, executing it with the generated test cases, and tracing the structures traversed in order to derive coverage metrics. The strategy for efficiently guiding the search process towards achieving full structural coverage involves favouring test cases that exercise problematic structures and control-flow paths. Static analysis and instrumentation is performed solely with basis on the information extracted from the test objects' Java Bytecode. Relevant contributions include the introduction of novel methodologies for automation, search guidance and input domain reduction, and the presentation of the eCrash automated test case generation tool.pt
dc.identifier.citationRIBEIRO, J. - Search-based test case generation for object-oriented Java software using strongly-typed genetic programming. In: Proceedings of the 2008 GECCO Conference Companion on Genetic and Evolutionary Computation. New York: ACM, 2008. pp. 1819-1822.pt
dc.identifier.isbn978-1-60558-131-6
dc.identifier.urihttp://hdl.handle.net/10400.8/128
dc.language.isoengpt
dc.publisherACMpt
dc.subjectEvolutionary testingpt
dc.subjectObject-orientationpt
dc.subjectSearch-based test case generationpt
dc.subjectStrongly-typed genetic programmingpt
dc.titleSearch-based test case generation for object-oriented Java software using strongly-typed genetic programmingpt
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceAtlantapt
oaire.citation.endPage1822pt
oaire.citation.startPage1819pt
oaire.citation.titleGECCO Conference on Genetic and Evolutionary Computationpt
person.familyNameRibeiro
person.givenNameJosé
person.identifier662638
person.identifier.ciencia-id0C1B-5E3F-6830
person.identifier.orcid0000-0003-3019-1330
person.identifier.scopus-author-id55947747200
rcaap.rightsrestrictedAccess
rcaap.typeconferenceObjectpt
relation.isAuthorOfPublication4ad743c6-5db7-4208-be72-c182c7b0f8ef
relation.isAuthorOfPublication.latestForDiscovery4ad743c6-5db7-4208-be72-c182c7b0f8ef

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
doc.docx
Size:
23.71 KB
Format:
Microsoft Word XML
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: