Publication
Cancellative conjugation semigroups and monoids
datacite.subject.fos | Ciências Naturais::Matemáticas | |
datacite.subject.sdg | 03:Saúde de Qualidade | |
datacite.subject.sdg | 09:Indústria, Inovação e Infraestruturas | |
datacite.subject.sdg | 12:Produção e Consumo Sustentáveis | |
dc.contributor.author | Garrão, A. P. | |
dc.contributor.author | Martins-Ferreira, Nelson | |
dc.contributor.author | Raposo, M. | |
dc.contributor.author | Sobral, M. | |
dc.date.accessioned | 2025-09-11T15:41:53Z | |
dc.date.available | 2025-09-11T15:41:53Z | |
dc.date.issued | 2019-11-21 | |
dc.description.abstract | We show that the category of cancellative conjugation semigroups is weakly Mal’tsev and give a characterization of all admissible diagrams there. In the category of cancellative conjugation monoids we describe, for Schreier split epimorphisms with codomain B and kernel X, all morphisms h: X→ B which induce a reflexive graph, an internal category or an internal groupoid. We describe Schreier split epimorphisms in terms of external actions and consider the notions of precrossed semimodule, crossed semimodule and crossed module in the context of cancellative conjugation monoids. In this category we prove that a relative version of the so-called “Smith is Huq” condition for Schreier split epimorphisms holds as well as other relative conditions. | eng |
dc.description.sponsorship | We are grateful to the anonymous referees for their comments and suggestions that greatly contributed to the improvement of a previous version. This work was partially supported by Fundação para a Ciência e a Tecnologia (FCT) via: (CDRSP–UID/Multi/04044/2019) and (CMUC – UID/MAT/00324/2019); PAMI - ROTEIRO/0328/2013 (N022158); Next.parts (17963); Centro2020; CDRSP and ESTG from the Polytechnic Institute of Leiria, Centro de Matemática da Universidade de Coimbra, Faculdade de Ciências e Tecnologia da Universidade dos Açores. | |
dc.identifier.citation | Garrão, A.P., Martins-Ferreira, N., Raposo, M. et al. Cancellative conjugation semigroups and monoids. Semigroup Forum 100, 806–836 (2020). https://doi.org/10.1007/s00233-019-10070-9. | |
dc.identifier.doi | 10.1007/s00233-019-10070-9 | |
dc.identifier.eissn | 1432-2137 | |
dc.identifier.issn | 0037-1912 | |
dc.identifier.uri | http://hdl.handle.net/10400.8/14054 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | Springer Nature | |
dc.relation | Centre for Rapid and Sustainable Product Development | |
dc.relation | Center for Mathematics, University of Coimbra | |
dc.relation.hasversion | https://link.springer.com/article/10.1007/s00233-019-10070-9 | |
dc.relation.ispartof | Semigroup Forum | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Admissibility diagrams | |
dc.subject | Weakly Mal’tsev category | |
dc.subject | Conjugation Semigroups | |
dc.subject | Internal monoid | |
dc.subject | Internal groupoid | |
dc.title | Cancellative conjugation semigroups and monoids | eng |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Centre for Rapid and Sustainable Product Development | |
oaire.awardTitle | Center for Mathematics, University of Coimbra | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMulti%2F04044%2F2019/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMAT%2F00324%2F2019/PT | |
oaire.citation.endPage | 836 | |
oaire.citation.startPage | 806 | |
oaire.citation.title | Semigroup Forum | |
oaire.citation.volume | 100 | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
person.familyName | Martins-Ferreira | |
person.givenName | Nelson | |
person.identifier | 485301 | |
person.identifier.ciencia-id | B115-B65E-24AA | |
person.identifier.orcid | 0000-0002-4199-7367 | |
person.identifier.rid | N-1699-2013 | |
person.identifier.scopus-author-id | 24598020700 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
relation.isAuthorOfPublication | 52406f6a-2c36-4e9a-9996-d3cc719d46bf | |
relation.isAuthorOfPublication.latestForDiscovery | 52406f6a-2c36-4e9a-9996-d3cc719d46bf | |
relation.isProjectOfPublication | aba3abaa-39ca-424c-a7d7-4d06649c5236 | |
relation.isProjectOfPublication | 4414d560-f34f-4920-8c43-c9101f04ad9e | |
relation.isProjectOfPublication.latestForDiscovery | 4414d560-f34f-4920-8c43-c9101f04ad9e |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Cancellative conjugation semigroups and monoids.pdf
- Size:
- 362.32 KB
- Format:
- Adobe Portable Document Format
- Description:
- We show that the category of cancellative conjugation semigroups is weakly Mal’tsev and give a characterization of all admissible diagrams there. In the category of cancellative conjugation monoids we describe, for Schreier split epimorphisms with codomain B and kernel X, all morphisms h: X→ B which induce a reflexive graph, an internal category or an internal groupoid. We describe Schreier split epimorphisms in terms of external actions and consider the notions of precrossed semimodule, crossed semimodule and crossed module in the context of cancellative conjugation monoids. In this category we prove that a relative version of the so-called “Smith is Huq” condition for Schreier split epimorphisms holds as well as other relative conditions.
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.32 KB
- Format:
- Item-specific license agreed upon to submission
- Description: