Repository logo
 
Publication

High-performance bankruptcy prediction model using Graphics Processing Units

datacite.subject.fosCiências Naturais::Ciências da Computação e da Informação
datacite.subject.sdg03:Saúde de Qualidade
datacite.subject.sdg07:Energias Renováveis e Acessíveis
datacite.subject.sdg11:Cidades e Comunidades Sustentáveis
dc.contributor.authorRibeiro, Bernardete
dc.contributor.authorLopes, Noel
dc.contributor.authorSilva, Catarina
dc.date.accessioned2025-11-20T12:16:16Z
dc.date.available2025-11-20T12:16:16Z
dc.date.issued2010-07
dc.descriptionEISBN - 978-1-4244-6918-5
dc.descriptionConference name - 6th IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 International Joint Conference on Neural Networks, IJCNN 2010; Conference date - 18 July 2010 - 23 July 2010; Conference code - 85188
dc.descriptionFonte: https://www.researchgate.net/publication/224181340_IJCNN_High-Performance_Bankruptcy_Prediction_Model_using_Graphics_Processing_Units
dc.description.abstractIn recent years the the potential and programmability of Graphics Processing Units (GPU) has raised a note-worthy interest in the research community for applications that demand high-computational power. In particular, in financial applications containing thousands of high-dimensional samples, machine learning techniques such as neural networks are often used. One of their main limitations is that the learning phase can be extremely consuming due to the long training times required which constitute a hard bottleneck for their use in practice. Thus their implementation in graphics hardware is highly desirable as a way to speed up the training process. In this paper we present a bankruptcy prediction model based on the parallel implementation of the Multiple BackPropagation (MBP) algorithm which is tested on a real data set of French companies (healthy and bankrupt). Results by running the MBP algorithm in a sequential processing CPU version and in a parallel GPU implementation show reduced computational costs with respect to the latter while yielding very competitive performance.eng
dc.description.sponsorshipFinancial support from “Fundação da Ciência e Tecnologia” under the project PTDC/GES/70168/2006 is gratefully acknowledged.
dc.identifier.citationB. Ribeiro, N. Lopes and C. Silva, "High-performance bankruptcy prediction model using Graphics Processing Units," The 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 2010, pp. 1-7, doi: https://doi.org/10.1109/IJCNN.2010.5596711.
dc.identifier.doi10.1109/ijcnn.2010.5596711
dc.identifier.eissn2161-4407
dc.identifier.isbn978-1-4244-6916-1
dc.identifier.isbn978-1-4244-6918-5
dc.identifier.issn2161-4393
dc.identifier.urihttp://hdl.handle.net/10400.8/14688
dc.language.isoeng
dc.peerreviewedyes
dc.publisherIEEE Canada
dc.relation.hasversionhttps://ieeexplore.ieee.org/document/5596711
dc.relation.ispartofThe 2010 International Joint Conference on Neural Networks (IJCNN)
dc.rights.uriN/A
dc.subjectGraphics processing unit
dc.subjectNeurons
dc.subjectPredictive models
dc.subjectComputational modeling
dc.subjectArtificial neural networks
dc.subjectTraining
dc.subjectCompanies
dc.titleHigh-performance bankruptcy prediction model using Graphics Processing Unitseng
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.conferenceDate2010-07
oaire.citation.conferencePlaceBarcelona, Spain
oaire.citation.endPage2216
oaire.citation.startPage2210
oaire.citation.titleProceedings of the International Joint Conference on Neural Networks
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameSilva
person.givenNameCatarina
person.identifier.ciencia-id1B19-3DDC-BE75
person.identifier.orcid0000-0002-5656-0061
relation.isAuthorOfPublicationee28e079-5ca7-4842-9094-372c40f75c38
relation.isAuthorOfPublication.latestForDiscoveryee28e079-5ca7-4842-9094-372c40f75c38

Files

License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: