Publication
Using artificial neural networks to scale and infer vegetation media phase functions
dc.contributor.author | Gómez-Pérez, Paula | |
dc.contributor.author | Caldeirinha, Rafael | |
dc.contributor.author | Fernandes, Telmo, Telmo Rui Carvalhinho Cunha, Telmo R. | |
dc.contributor.author | Cuiñas, Iñigo | |
dc.date.accessioned | 2025-07-15T13:27:27Z | |
dc.date.available | 2025-07-15T13:27:27Z | |
dc.date.issued | 2016-12-19 | |
dc.description.abstract | Accurate vegetation models usually rely on experimental data obtained by means of measurement campaigns. Nowadays, RET and dRET models provide a realistic characterization of vegetation volumes, including not only in-excess attenuation, but also scattering, diffraction and depolarization. Nevertheless, both approaches imply the characterization of the forest media by means of a range of parameters, and thus, the construction of a simple parameter extraction method based on propagation measurements is required. Moreover, when dealing with experimental data, two common problems must be usually overcome: the scaling of the vegetation mass parameters into different dimensions, and the scarce number of frequencies available within the experimental data set. This paper proposes the use of Artificial Neural Networks as accurate and reliable tools able to scale vegetation parameters for varying physical dimensions and to predict them for new frequencies. This proposal provides a RMS error lower than 1 dB when compared to unbiased measured data, leading to an accurate parameter extracting method, while being simple enough for not to increase the computational cost of the model. | eng |
dc.description.sponsorship | Research partially supported by the Portuguese Government, Portuguese Foundation for Science and Technology (FCT); the University of South Wales, United Kingdom; Spanish Government, Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación (project TEC2014-55735-C03-3R); AtlantTIC Research Center, the European Regional Development Fund (ERDF) and Xunta de Galicia (Project GRC1015/019) | |
dc.identifier.citation | Gómez-Pérez, P., Caldeirinha, R.F.S., Fernandes, T.R. et al. Using artificial neural networks to scale and infer vegetation media phase functions. Neural Comput & Applic 29, 1563–1574 (2018). https://doi.org/10.1007/s00521-016-2778-6 | |
dc.identifier.doi | 10.1007/s00521-016-2778-6 | |
dc.identifier.issn | 0941-0643 | |
dc.identifier.issn | 1433-3058 | |
dc.identifier.uri | http://hdl.handle.net/10400.8/13649 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | Springer Science and Business Media LLC | |
dc.relation.hasversion | https://link.springer.com/article/10.1007/s00521-016-2778-6 | |
dc.relation.ispartof | Neural Computing and Applications | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Plant Physiology | |
dc.subject | Agronomy | |
dc.subject | Plant Science | |
dc.subject | Plant Ecology | |
dc.subject | Model plants | |
dc.subject | Artificial photosynthesis | |
dc.title | Using artificial neural networks to scale and infer vegetation media phase functions | eng |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 1574 | |
oaire.citation.issue | 12 | |
oaire.citation.startPage | 1563 | |
oaire.citation.title | Neural Computing and Applications | |
oaire.citation.volume | 29 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
person.familyName | Caldeirinha | |
person.familyName | Fernandes | |
person.givenName | Rafael | |
person.givenName | Telmo | |
person.identifier.ciencia-id | 4D18-2B1E-0960 | |
person.identifier.ciencia-id | 391F-E0B5-14B5 | |
person.identifier.orcid | 0000-0003-0297-7870 | |
person.identifier.orcid | 0000-0003-0882-7478 | |
person.identifier.rid | F-1499-2015 | |
person.identifier.rid | B-7909-2018 | |
person.identifier.scopus-author-id | 7801603527 | |
person.identifier.scopus-author-id | 24779209500 | |
relation.isAuthorOfPublication | b04f8672-d7af-443e-9104-ae8698dcdc9d | |
relation.isAuthorOfPublication | 5c77bf6a-79cb-4cfd-b316-b2ed1890bb29 | |
relation.isAuthorOfPublication.latestForDiscovery | 5c77bf6a-79cb-4cfd-b316-b2ed1890bb29 |