Repository logo
 
Publication

Using artificial neural networks to scale and infer vegetation media phase functions

dc.contributor.authorGómez-Pérez, Paula
dc.contributor.authorCaldeirinha, Rafael
dc.contributor.authorFernandes, Telmo, Telmo Rui Carvalhinho Cunha, Telmo R.
dc.contributor.authorCuiñas, Iñigo
dc.date.accessioned2025-07-15T13:27:27Z
dc.date.available2025-07-15T13:27:27Z
dc.date.issued2016-12-19
dc.description.abstractAccurate vegetation models usually rely on experimental data obtained by means of measurement campaigns. Nowadays, RET and dRET models provide a realistic characterization of vegetation volumes, including not only in-excess attenuation, but also scattering, diffraction and depolarization. Nevertheless, both approaches imply the characterization of the forest media by means of a range of parameters, and thus, the construction of a simple parameter extraction method based on propagation measurements is required. Moreover, when dealing with experimental data, two common problems must be usually overcome: the scaling of the vegetation mass parameters into different dimensions, and the scarce number of frequencies available within the experimental data set. This paper proposes the use of Artificial Neural Networks as accurate and reliable tools able to scale vegetation parameters for varying physical dimensions and to predict them for new frequencies. This proposal provides a RMS error lower than 1 dB when compared to unbiased measured data, leading to an accurate parameter extracting method, while being simple enough for not to increase the computational cost of the model.eng
dc.description.sponsorshipResearch partially supported by the Portuguese Government, Portuguese Foundation for Science and Technology (FCT); the University of South Wales, United Kingdom; Spanish Government, Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación (project TEC2014-55735-C03-3R); AtlantTIC Research Center, the European Regional Development Fund (ERDF) and Xunta de Galicia (Project GRC1015/019)
dc.identifier.citationGómez-Pérez, P., Caldeirinha, R.F.S., Fernandes, T.R. et al. Using artificial neural networks to scale and infer vegetation media phase functions. Neural Comput & Applic 29, 1563–1574 (2018). https://doi.org/10.1007/s00521-016-2778-6
dc.identifier.doi10.1007/s00521-016-2778-6
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.urihttp://hdl.handle.net/10400.8/13649
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer Science and Business Media LLC
dc.relation.hasversionhttps://link.springer.com/article/10.1007/s00521-016-2778-6
dc.relation.ispartofNeural Computing and Applications
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPlant Physiology
dc.subjectAgronomy
dc.subjectPlant Science
dc.subjectPlant Ecology
dc.subjectModel plants
dc.subjectArtificial photosynthesis
dc.titleUsing artificial neural networks to scale and infer vegetation media phase functionseng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage1574
oaire.citation.issue12
oaire.citation.startPage1563
oaire.citation.titleNeural Computing and Applications
oaire.citation.volume29
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameCaldeirinha
person.familyNameFernandes
person.givenNameRafael
person.givenNameTelmo
person.identifier.ciencia-id4D18-2B1E-0960
person.identifier.ciencia-id391F-E0B5-14B5
person.identifier.orcid0000-0003-0297-7870
person.identifier.orcid0000-0003-0882-7478
person.identifier.ridF-1499-2015
person.identifier.ridB-7909-2018
person.identifier.scopus-author-id7801603527
person.identifier.scopus-author-id24779209500
relation.isAuthorOfPublicationb04f8672-d7af-443e-9104-ae8698dcdc9d
relation.isAuthorOfPublication5c77bf6a-79cb-4cfd-b316-b2ed1890bb29
relation.isAuthorOfPublication.latestForDiscovery5c77bf6a-79cb-4cfd-b316-b2ed1890bb29

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s00521-016-2778-6.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: