Repository logo
 
Publication

Active Manifold Learning with Twitter Big Data

datacite.subject.fosEngenharia e Tecnologia
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
dc.contributor.authorSilva, Catarina
dc.contributor.authorAntunes, Mário
dc.contributor.authorCosta, Joana
dc.contributor.authorRibeiro, Bernardete
dc.date.accessioned2025-12-16T19:29:04Z
dc.date.available2025-12-16T19:29:04Z
dc.date.issued2015
dc.descriptionConference name INNS Conference on Big Data 2015, San Francisco
dc.descriptionConference date 8 August 2015 - 10 August 2015
dc.description.abstractThe data produced by Internet applications have increased substantially. Big data is a flaring field that deals with this deluge of data by using storage techniques, dedicated infrastructures and development frameworks for the parallelization of defined tasks and its consequent reduction. These solutions however fall short in online and highly data demanding scenarios, since users expect swift feedback. Reduction techniques are efficiently used in big data online applications to improve classification problems. Reduction in big data usually falls in one of two main methods: (i) reduce the dimensionality by pruning or reformulating the feature set; (ii) reduce the sample size by choosing the most relevant examples. Both approaches have benefits, not only of time consumed to build a model, but eventually also performance-wise, usually by reducing overfitting and improving generalization capabilities. In this paper we investigate reduction techniques that tackle both dimensionality and size of big data. We propose a framework that combines a manifold learning approach to reduce dimensionality and an active learning SVM-based strategy to reduce the size of labeled sample. Results on Twitter data show the potential of the proposed active manifold learning approach.eng
dc.description.sponsorship
dc.identifier.citationSilva, Catarina & Antunes, Mario & Costa, Joana & Ribeiro, Bernardete. (2015). Active Manifold Learning with Twitter Big Data. Procedia Computer Science. 53. 208-215. 10.1016/j.procs.2015.07.296.
dc.identifier.doi10.1016/j.procs.2015.07.296
dc.identifier.issn1877-0509
dc.identifier.urihttp://hdl.handle.net/10400.8/15105
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relation.hasversionhttps://www.sciencedirect.com/science/article/pii/S1877050915017998
dc.relation.ispartofProcedia Computer Science
dc.rights.uriN/A
dc.subjectBig data
dc.subjectSupport Vector Machine
dc.subjectManifold
dc.subjectTwitter
dc.titleActive Manifold Learning with Twitter Big Dataeng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage215
oaire.citation.issue1
oaire.citation.startPage208
oaire.citation.titleProcedia Computer Science
oaire.citation.volume53
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameSilva
person.familyNameAntunes
person.familyNameCosta
person.givenNameCatarina
person.givenNameMário
person.givenNameJoana
person.identifierR-000-NX4
person.identifier.ciencia-id1B19-3DDC-BE75
person.identifier.ciencia-idAF10-7EDD-5153
person.identifier.orcid0000-0002-5656-0061
person.identifier.orcid0000-0003-3448-6726
person.identifier.orcid0000-0002-4053-5718
person.identifier.scopus-author-id25930820200
relation.isAuthorOfPublicationee28e079-5ca7-4842-9094-372c40f75c38
relation.isAuthorOfPublicatione3e87fb0-d1d6-44c3-985d-920a5560f8c1
relation.isAuthorOfPublication23d200dc-1a81-4bd9-9a4a-0efc28af6ce4
relation.isAuthorOfPublication.latestForDiscoveryee28e079-5ca7-4842-9094-372c40f75c38

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Active Manifold Learning with Twitter Big Data.pdf
Size:
297.65 KB
Format:
Adobe Portable Document Format
Description:
Part of special issue INNS Conference on Big Data 2015 Program San Francisco, CA, USA 8-10 August 2015
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: