| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 384.58 KB | Adobe PDF |
Advisor(s)
Abstract(s)
In recent years, machine learning (ML) has been increasingly used in many fields, including medicine. Magnetic resonance imaging (MRI) is a non-invasive and effective diagnostic technique; however, manual image analysis is time-consuming and prone to human variability. In response, ML models have been developed to support MRI analysis, particularly in segmentation and classification tasks. This work presents an updated narrative review of ML applications in brain MRI, with a focus on tumor classification and segmentation. A literature search was conducted in PubMed and Scopus databases and Mendeley Catalog (MC)—a publicly accessible bibliographic catalog linked to Elsevier’s Scopus indexing system—covering the period from January 2020 to April 2025. The included studies focused on patients with primary or secondary brain neoplasms and applied machine learning techniques to MRI data for classification or segmentation purposes. Only original research articles written in English and reporting model validation were considered. Studies using animal models, non-imaging data, lacking proper validation, or without accessible full texts (e.g., abstract-only records or publications unavailable through institutional access) were excluded. In total, 108 studies met all inclusion criteria and were analyzed qualitatively. In general, models based on convolutional neural networks (CNNs) were found to dominate current research due to their ability to extract spatial features directly from imaging data. Reported classification accuracies ranged from 95% to 99%, while Dice coefficients for segmentation tasks varied between 0.83 and 0.94. Hybrid architectures (e.g., CNN-SVM, CNN-LSTM) achieved strong results in both classification and segmentation tasks, with accuracies above 95% and Dice scores around 0.90. Transformer-based models, such as the Swin Transformer, reached the highest performance, up to 99.9%. Despite high reported accuracy, challenges remain regarding overfitting, generalization to real-world clinical data, and lack of standardized evaluation protocols. Transfer learning and data augmentation were frequently applied to mitigate limited data availability, while radiomics-based models introduced new avenues for personalized diagnostics. ML has demonstrated substantial potential in enhancing brain MRI analysis and supporting clinical decision-making. Nevertheless, further progress requires rigorous clinical validation, methodological standardization, and comparative benchmarking to bridge the gap between research settings and practical deployment.
Description
Article number - 2692
Keywords
Machine learning Magnetic resonance imaging (MRI) Brain tumor Classification Brain imaging
Pedagogical Context
Citation
Ottoni, M.; Kasperczuk, A.; Tavora, L.M.N. Machine Learning in MRI Brain Imaging: A Review of Methods, Challenges, and Future Directions. Diagnostics 2025, 15, 2692. https://doi.org/10.3390/ diagnostics15212692
Publisher
MDPI
