Repository logo
 
Publication

A hybrid ant colony optimization algorithm for solving the terminal assignment problem

dc.contributor.authorBernardino, Eugénia
dc.contributor.authorBernardino, Anabela
dc.contributor.authorSánchez-Pérez, Juan Manuel
dc.contributor.authorGómez-Pulido, Juan Antonio
dc.contributor.authorVega-Rodríguez, Miguel Angel
dc.date.accessioned2025-06-02T14:03:12Z
dc.date.available2025-06-02T14:03:12Z
dc.date.issued2009-10
dc.description1st International Joint Conference on Computational Intelligence, IJCCI 2009, 5 October 2009 through 7 October 2009 - Code 81347
dc.description.abstractThe past two decades have witnessed tremendous research activities in optimization methods for communication networks. One important problem in communication networks is the Terminal Assignment Problem. This problem involves determining minimum cost links to form a network by connecting a collection of terminals to a collection of concentrators. In this paper, we propose a Hybrid Ant Colony Optimization Algorithm to solve the Terminal Assignment Problem. We compare our results with the results obtained by the standard Genetic Algorithm, the Tabu Search Algorithm and the Hybrid Differential Evolution Algorithm, used in literature.eng
dc.identifier.citationBernardino, E. M., Bernardino, A. M., Sánchez-Pérez, J. M., Pulido, J. A. G., & Vega-Rodríguez, M. A. (2009, October). A hybrid ant colony optimization algorithm for solving the terminal assignment problem. In International Conference on Evolutionary Computation (Vol. 2, pp. 144-151). SCITEPRESS. DOI: https://doi.org/10.5220/0002322001440151.
dc.identifier.doi10.5220/0002322001440151
dc.identifier.isbn978-989674014-6
dc.identifier.urihttp://hdl.handle.net/10400.8/13059
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSciTePress - Science and and Technology Publications
dc.relation.hasversionhttps://www.scitepress.org/PublishedPapers/2009/23220/23220.pdf
dc.relation.ispartofProceedings of the International Joint Conference on Computational Intelligence
dc.rights.uriN/A
dc.subjectCommunication networks
dc.subjectOptimization algorithms
dc.subjectAnt colony optimization algorithm
dc.subjectTerminal assignment problem
dc.titleA hybrid ant colony optimization algorithm for solving the terminal assignment problemeng
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.conferenceDate2009-10
oaire.citation.conferencePlaceFunchal, Madeira, Portugal
oaire.citation.endPage151
oaire.citation.startPage144
oaire.citation.titleInternational Joint Conference on Computational Intelligence
oaire.citation.volume2
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameBernardino
person.familyNameMoreira Bernardino
person.givenNameEugénia
person.givenNameAnabela
person.identifier.ciencia-id9616-F1BC-D8BD
person.identifier.ciencia-id081E-F3B8-316A
person.identifier.orcid0000-0001-5301-5853
person.identifier.orcid0000-0002-6561-5730
person.identifier.scopus-author-id24402754700
relation.isAuthorOfPublication893cf15c-eff8-4e43-949c-c1de6eb87599
relation.isAuthorOfPublication375ebe15-f84c-46a4-a3d9-6e4935a92187
relation.isAuthorOfPublication.latestForDiscovery375ebe15-f84c-46a4-a3d9-6e4935a92187

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A hybrid ant colony optimization algorithm for solving the terminal assignment problem.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description:
The past two decades have witnessed tremendous research activities in optimization methods for communication networks. One important problem in communication networks is the Terminal Assignment Problem. This problem involves determining minimum cost links to form a network by connecting a collection of terminals to a collection of concentrators. In this paper, we propose a Hybrid Ant Colony Optimization Algorithm to solve the Terminal Assignment Problem. We compare our results with the results obtained by the standard Genetic Algorithm, the Tabu Search Algorithm and the Hybrid Differential Evolution Algorithm, used in literature.
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: