Repository logo
 
Publication

Adaptive learning for dynamic environments: A comparative approach

dc.contributor.authorCosta, Joana
dc.contributor.authorSilva, Catarina
dc.contributor.authorAntunes, Mário
dc.contributor.authorRibeiro, Bernardete
dc.date.accessioned2025-05-19T14:50:23Z
dc.date.available2025-05-19T14:50:23Z
dc.date.issued2017-08-07
dc.description.abstractNowadays most learning problems demand adaptive solutions. Current challenges include temporal data streams, drift and non-stationary scenarios, often with text data, whether in social networks or in business systems. Various efforts have been pursued in machine learning settings to learn in such environments, specially because of their non-trivial nature, since changes occur between the distribution data used to define the model and the current environment. In this work we present the Drift Adaptive Retain Knowledge (DARK) framework to tackle adaptive learning in dynamic environments based on recent and retained knowledge. DARK handles an ensemble of multiple Support Vector Machine (SVM) models that are dynamically weighted and have distinct training window sizes. A comparative study with benchmark solutions in the field, namely the Learn++.NSE algorithm, is also presented. Experimental results revealed that DARK outperforms Learn++.NSE with two different base classifiers, an SVM and a Classification and Regression Tree (CART).eng
dc.identifier.citationJoana Costa, Catarina Silva, Mário Antunes, Bernardete Ribeiro, Adaptive learning for dynamic environments: A comparative approach, Engineering Applications of Artificial Intelligence, Volume 65, 2017, Pages 336-345, ISSN 0952-1976, https://doi.org/10.1016/j.engappai.2017.08.004
dc.identifier.doi10.1016/j.engappai.2017.08.004
dc.identifier.issn0952-1976
dc.identifier.urihttp://hdl.handle.net/10400.8/12930
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relation.hasversionhttps://www.sciencedirect.com/science/article/pii/S0952197617301884
dc.rights.uriN/A
dc.subjectDynamic environments
dc.subjectEnsembles
dc.subjectLearn++.NSE
dc.subjectTwitter
dc.titleAdaptive learning for dynamic environments: A comparative approacheng
dc.typeresearch article
dspace.entity.typePublication
oaire.citation.endPage345
oaire.citation.startPage336
oaire.citation.titleEngineering Applications of Artificial Intelligence
oaire.citation.volume65
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameSilva
person.familyNameAntunes
person.givenNameCatarina
person.givenNameMário
person.identifierR-000-NX4
person.identifier.ciencia-idAF10-7EDD-5153
person.identifier.orcid0000-0002-5656-0061
person.identifier.orcid0000-0003-3448-6726
person.identifier.scopus-author-id25930820200
relation.isAuthorOfPublicationee28e079-5ca7-4842-9094-372c40f75c38
relation.isAuthorOfPublicatione3e87fb0-d1d6-44c3-985d-920a5560f8c1
relation.isAuthorOfPublication.latestForDiscoveryee28e079-5ca7-4842-9094-372c40f75c38

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0952197617301884-main.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: