Publicação
Skin lesion classification enhancement using border-line features – The melanoma vs nevus problem
| datacite.subject.fos | Ciências Naturais::Ciências da Computação e da Informação | |
| datacite.subject.fos | Ciências Médicas::Outras Ciências Médicas | |
| datacite.subject.fos | Engenharia e Tecnologia::Engenharia Médica | |
| datacite.subject.sdg | 03:Saúde de Qualidade | |
| datacite.subject.sdg | 10:Reduzir as Desigualdades | |
| datacite.subject.sdg | 11:Cidades e Comunidades Sustentáveis | |
| dc.contributor.author | Pereira, Pedro M. M. | |
| dc.contributor.author | Fonseca-Pinto, Rui | |
| dc.contributor.author | Paiva, Rui Pedro | |
| dc.contributor.author | Assuncao, Pedro A. A. | |
| dc.contributor.author | Tavora, Luis M. N. | |
| dc.contributor.author | Thomaz, Lucas A. | |
| dc.contributor.author | Faria, Sergio M. M. | |
| dc.date.accessioned | 2025-10-07T11:16:11Z | |
| dc.date.available | 2025-10-07T11:16:11Z | |
| dc.date.issued | 2020-03 | |
| dc.description.abstract | Machine learning algorithms are progressively assuming an important role as a computational tool to support clinical diagnosis, namely in the classification of pigmented skin lesions. The current classification methods commonly rely on features derived from shape, colour, or texture, obtained after image segmentation, but these do not always guarantee the best results. To improve the classification accuracy, this work proposes to further exploit the border-line characteristics of the lesion segmentation mask, by combining gradients with local binary patterns (LBP). In the proposed method, these border-line features are used together with the conventional ones to enhance the performance of skin lesion classification algorithms. When the new features are combined with the classical ones, the experimental results show higher accuracy, which impacts positively the overall performance of the classification algorithms. As the medical image datasets usually present large class imbalance, which results in low sensitivity for the classifiers, the border-line features have a positive impact on this classification metric, as evidenced by the experimental results. Both the features’ usefulness and their impact are assessed in regard to the classification results, which in turn are statistically tested for completeness, using three different classifiers and two medical image datasets. | eng |
| dc.description.sponsorship | This work was supported by the Fundação para a Ciência e Tecnologia, Portugal, under PhD Grant SFRH/BD/128669/2017 and project PlenoISLA PTDC/EEI-TEL/28325/2017, and Instituto de Telecomunicações project UID/EEA/50008/2019, through national funds and where applicable co-funded by FEDER – PT2020. | |
| dc.identifier.citation | Pedro M.M. Pereira, Rui Fonseca-Pinto, Rui Pedro Paiva, Pedro A.A. Assuncao, Luis M.N. Tavora, Lucas A. Thomaz, Sergio M.M. Faria, Skin lesion classification enhancement using border-line features – The melanoma vs nevus problem, Biomedical Signal Processing and Control, Volume 57, 2020, 101765, ISSN 1746-8094, https://doi.org/10.1016/j.bspc.2019.101765. | |
| dc.identifier.doi | 10.1016/j.bspc.2019.101765 | |
| dc.identifier.eissn | 1746-8108 | |
| dc.identifier.issn | 1746-8094 | |
| dc.identifier.uri | http://hdl.handle.net/10400.8/14220 | |
| dc.language.iso | eng | |
| dc.peerreviewed | yes | |
| dc.publisher | Elsevier | |
| dc.relation | Skin Lesion Assessment based on Plenoptic Images for Melanoma Classification. Titulo anterior: Texture and Patterns in 3D plenoptic skin lesion assessment: A taxonomy proposal for melanoma classification | |
| dc.relation | Plenoptic imaging for skin lesion assessment | |
| dc.relation | Instituto de Telecomunicações | |
| dc.relation.hasversion | https://www.sciencedirect.com/science/article/pii/S1746809419303465?via%3Dihub | |
| dc.relation.ispartof | Biomedical Signal Processing and Control | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | Medical imaging | |
| dc.subject | Skin lesion | |
| dc.subject | Image segmentation | |
| dc.subject | Feature extraction | |
| dc.subject | Classification | |
| dc.title | Skin lesion classification enhancement using border-line features – The melanoma vs nevus problem | eng |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Skin Lesion Assessment based on Plenoptic Images for Melanoma Classification. Titulo anterior: Texture and Patterns in 3D plenoptic skin lesion assessment: A taxonomy proposal for melanoma classification | |
| oaire.awardTitle | Plenoptic imaging for skin lesion assessment | |
| oaire.awardTitle | Instituto de Telecomunicações | |
| oaire.awardURI | http://hdl.handle.net/10400.8/14125 | |
| oaire.awardURI | http://hdl.handle.net/10400.8/14218 | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F50008%2F2019/PT | |
| oaire.citation.endPage | 8 | |
| oaire.citation.startPage | 1 | |
| oaire.citation.title | Biomedical Signal Processing and Control | |
| oaire.citation.volume | 57 | |
| oaire.fundingStream | Concurso para Financiamento de Projetos de Investigação Científica e Desenvolvimento Tecnológico em Todos os Domínios Científicos - 2017 | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| person.familyName | Fonseca-Pinto | |
| person.familyName | Assunção | |
| person.familyName | de Oliveira Pegado de Noronha E Távora | |
| person.familyName | Thomaz | |
| person.familyName | Faria | |
| person.givenName | Rui | |
| person.givenName | Pedro | |
| person.givenName | Luís Miguel | |
| person.givenName | Lucas | |
| person.givenName | Sergio | |
| person.identifier.ciencia-id | 681D-C547-B184 | |
| person.identifier.ciencia-id | 6811-3984-C17B | |
| person.identifier.ciencia-id | 121C-FADA-D750 | |
| person.identifier.ciencia-id | 8815-4101-28DD | |
| person.identifier.orcid | 0000-0001-6774-5363 | |
| person.identifier.orcid | 0000-0001-9539-8311 | |
| person.identifier.orcid | 0000-0002-8580-1979 | |
| person.identifier.orcid | 0000-0002-1004-7772 | |
| person.identifier.orcid | 0000-0002-0993-9124 | |
| person.identifier.rid | K-9449-2014 | |
| person.identifier.rid | A-4827-2017 | |
| person.identifier.rid | C-5245-2011 | |
| person.identifier.scopus-author-id | 26039086400 | |
| person.identifier.scopus-author-id | 6701838347 | |
| person.identifier.scopus-author-id | 14027853900 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| relation.isAuthorOfPublication | 7eb9d123-1800-4afd-a2f6-91043353011b | |
| relation.isAuthorOfPublication | 25649bb9-f135-48e8-8d0f-3706b86701d3 | |
| relation.isAuthorOfPublication | 71940f24-f333-4ab6-abf6-00c7119a07c2 | |
| relation.isAuthorOfPublication | 5aaecc29-3e2f-49a6-9fd9-7000d9f6085f | |
| relation.isAuthorOfPublication | f69bd4d6-a6ef-4d20-8148-575478909661 | |
| relation.isAuthorOfPublication.latestForDiscovery | 7eb9d123-1800-4afd-a2f6-91043353011b | |
| relation.isProjectOfPublication | 90b7c55a-b84e-4987-821f-cb7eb07499de | |
| relation.isProjectOfPublication | eb448603-3a58-4ba8-912e-485f33d807d8 | |
| relation.isProjectOfPublication | 8dd76ecc-a109-45e6-9fda-f72c712a17b9 | |
| relation.isProjectOfPublication.latestForDiscovery | 90b7c55a-b84e-4987-821f-cb7eb07499de |
Ficheiros
Principais
1 - 1 de 1
A carregar...
- Nome:
- Skin lesion classification enhancement using border-line features – The melanoma vs nevus problem.pdf
- Tamanho:
- 1.49 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
- Machine learning algorithms are progressively assuming an important role as a computational tool to support clinical diagnosis, namely in the classification of pigmented skin lesions. The current classification methods commonly rely on features derived from shape, colour, or texture, obtained after image segmentation, but these do not always guarantee the best results. To improve the classification accuracy, this work proposes to further exploit the border-line characteristics of the lesion segmentation mask, by combining gradients with local binary patterns (LBP). In the proposed method, these border-line features are used together with the conventional ones to enhance the performance of skin lesion classification algorithms. When the new features are combined with the classical ones, the experimental results show higher accuracy, which impacts positively the overall performance of the classification algorithms. As the medical image datasets usually present large class imbalance, which results in low sensitivity for the classifiers, the border-line features have a positive impact on this classification metric, as evidenced by the experimental results. Both the features’ usefulness and their impact are assessed in regard to the classification results, which in turn are statistically tested for completeness, using three different classifiers and two medical image datasets.
Licença
1 - 1 de 1
Miniatura indisponível
- Nome:
- license.txt
- Tamanho:
- 1.32 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição:
