Repository logo
 
Publication

Point Cloud Coding: Adopting a Deep Learningbased Approach

datacite.subject.fosCiências Médicas::Biotecnologia Médica
datacite.subject.fosEngenharia e Tecnologia::Engenharia Médica
datacite.subject.sdg03:Saúde de Qualidade
datacite.subject.sdg10:Reduzir as Desigualdades
datacite.subject.sdg11:Cidades e Comunidades Sustentáveis
dc.contributor.authorGuarda, André
dc.contributor.authorM. M. Rodrigues, Nuno
dc.contributor.authorPereira, Fernando
dc.date.accessioned2025-05-20T14:35:08Z
dc.date.available2025-05-20T14:35:08Z
dc.date.issued2019-11
dc.descriptionConference: Picture Coding Symposium (PCS), Nov. 12-15, 2019, Ningbo, China, 2019
dc.description.abstractPoint clouds have recently become an important visual representation format, especially for virtual and augmented reality applications, thus making point cloud coding a very hot research topic. Deep learning-based coding methods have recently emerged in the field of image coding with increasing success. These coding solutions take advantage of the ability of convolutional neural networks to extract adaptive features from the images to create a latent representation that can be efficiently coded. In this context, this paper extends the deep-learning coding approach to point cloud coding using an autoencoder network design. Performance results are very promising, showing improvements over the Point Cloud Library codec often taken as benchmark, thus suggesting a significant margin of evolution for this new point cloud coding paradigm.eng
dc.description.sponsorshipThis work was funded by Fundação para a Ciência e Tecnologia (FCT), Portugal, Ph.D. Grant SFRH/BD/118218/2016, by FCT/MEC through national funds and when applicable co-funded by FEDER – PT2020 partnership agreement under the project UID/EEA/50008/2019.
dc.identifier.citationAndré, G., M., R. N. M., & Fernando, P. (2019). Point Cloud Coding: Adopting a Deep Learning-based Approach. Picture Coding Symposium (PCS). CN. https://doi.org/10.1109/PCS48520.2019.8954537
dc.identifier.doi10.1109/pcs48520.2019.8954537
dc.identifier.isbn978-1-7281-4705-5
dc.identifier.issn2330-7935
dc.identifier.urihttp://hdl.handle.net/10400.8/12943
dc.language.isoeng
dc.peerreviewedyes
dc.publisherIEEE Canada
dc.relationEfficient lossy and lossless compression of point clouds
dc.relationInstituto de Telecomunicações
dc.relation.hasversionhttps://ieeexplore.ieee.org/document/8954537
dc.relation.ispartof2019 Picture Coding Symposium (PCS)
dc.rights.uriN/A
dc.subjectpoint cloud coding
dc.subjectdeep learning
dc.subjectconvolutional neural network
dc.titlePoint Cloud Coding: Adopting a Deep Learningbased Approacheng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleEfficient lossy and lossless compression of point clouds
oaire.awardTitleInstituto de Telecomunicações
oaire.awardURIhttp://hdl.handle.net/10400.8/12910
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F50008%2F2019/PT
oaire.citation.titlePicture Coding Symposium (PCS)
oaire.fundingStreamOE
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameGuarda
person.familyNameM. M. Rodrigues
person.givenNameAndré
person.givenNameNuno
person.identifier.ciencia-idF811-146F-4EE9
person.identifier.orcid0000-0001-5996-1074
person.identifier.orcid0000-0001-9536-1017
person.identifier.scopus-author-id7006052345
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublicationab4d7e6e-b391-49ba-a618-a52fc62c8837
relation.isAuthorOfPublicationb4ebe652-7f0e-4e67-adb0-d5ea29fc9e69
relation.isAuthorOfPublication.latestForDiscoveryb4ebe652-7f0e-4e67-adb0-d5ea29fc9e69
relation.isProjectOfPublicationd619b8c6-7ef9-4635-98fd-a9a7be25e5f8
relation.isProjectOfPublication8dd76ecc-a109-45e6-9fda-f72c712a17b9
relation.isProjectOfPublication.latestForDiscoveryd619b8c6-7ef9-4635-98fd-a9a7be25e5f8

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1 - Point Cloud Coding.pdf
Size:
3.62 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: