Repository logo
 
Publication

Energy-Efficient and Portable Least Squares Prediction for Image Coding on a Mobile GPU

dc.contributor.authorCordeiro, Pedro
dc.contributor.authorFalcao, Gabriel
dc.contributor.authorDomingues, Patrício
dc.contributor.authorRodrigues, Nuno
dc.contributor.authorFaria, Sergio
dc.date.accessioned2025-07-09T08:48:46Z
dc.date.available2025-07-09T08:48:46Z
dc.date.issued2017-04-27
dc.description.abstractLeast squares prediction is a technique used to foresee pixel values during image coding by finding the minimum square error of neighbouring pixels. It has shown considerable quality gains especially for complex images with high variations in pixel intensities. The drawback of this technique consists of high computational complexity, consuming the most significant part of processing time and resources available, which makes it difficult to implement in fast, lossy image coders. One challenge is therefore to reduce the computational time of this predictor, namely through the use of new parallel programming techniques, making it more attractive for state-of-the-art coder-decoders. Also, new algorithmic propositions are made, trying to reduce the time spent in exchange for rate-distortion performance. These propositions are senseful since this predictor is used not only in lossless image coding, but also in lossy as well. Another aim of this article is to analyze energy efficiency among different types of platforms for this signal processing algorithm. Comparisons are provided on parallel computing processors ranging from very powerful Graphics Computing Units (GPUs) to mobile General-Purpose GPUs.eng
dc.description.sponsorshipThis work was supported by FCT and Instituto de Telecomunicac¸ ˜oes under grant UID/EEA/50008/2013.
dc.identifier.citationP. Cordeiro, G. Falcao, P. Domingues, N. Rodrigues and S. Faria, "Energy-Efficient and Portable Least Squares Prediction for Image Coding on a Mobile GPU," 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), St. Petersburg, Russia, 2017, pp. 237-240, doi: 10.1109/PDP.2017.97
dc.identifier.doi10.1109/pdp.2017.97
dc.identifier.urihttp://hdl.handle.net/10400.8/13580
dc.language.isoeng
dc.peerreviewedyes
dc.publisherIEEE
dc.relationUID/EEA/50008/2013
dc.relation.hasversionhttps://ieeexplore.ieee.org/document/7912652
dc.relation.ispartof2017 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)
dc.rights.uriN/A
dc.subjectParallel processing
dc.subjectMobile GPU
dc.subjectEnergyefficiency
dc.subjectImage Coding
dc.subjectLeast Squares Prediction
dc.titleEnergy-Efficient and Portable Least Squares Prediction for Image Coding on a Mobile GPUeng
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.conferenceDate2017-03-06
oaire.citation.conferencePlaceSt. Petersburg, Russia
oaire.citation.endPage240
oaire.citation.startPage237
oaire.citation.title25th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameDomingues
person.familyNameM. M. Rodrigues
person.familyNameFaria
person.givenNamePatrício
person.givenNameNuno
person.givenNameSergio
person.identifier.ciencia-idAA15-6185-C477
person.identifier.ciencia-id8815-4101-28DD
person.identifier.orcid0000-0002-6207-6292
person.identifier.orcid0000-0001-9536-1017
person.identifier.orcid0000-0002-0993-9124
person.identifier.ridC-5245-2011
person.identifier.scopus-author-id13411315400
person.identifier.scopus-author-id7006052345
person.identifier.scopus-author-id14027853900
relation.isAuthorOfPublicationb88ada5f-0d8b-4e55-ab0a-62aa82ea1388
relation.isAuthorOfPublicationb4ebe652-7f0e-4e67-adb0-d5ea29fc9e69
relation.isAuthorOfPublicationf69bd4d6-a6ef-4d20-8148-575478909661
relation.isAuthorOfPublication.latestForDiscoveryb88ada5f-0d8b-4e55-ab0a-62aa82ea1388

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Energy-Efficient_and_Portable_Least_Squares_Prediction_for_Image_Coding_on_a_Mobile_GPU.pdf
Size:
282.65 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: