Logo do repositório
 
A carregar...
Miniatura
Publicação

Using Peano–Hilbert space filling curves for fast bidimensional ensemble EMD realization

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
1687-6180-2012-181.pdf1.73 MBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Empirical mode decomposition (EMD) is a fully unsupervised and data-driven approach to the class of nonlinear and non-stationary signals. A new approach is proposed, namely PHEEMD, to image analysis by using Peano–Hilbert space filling curves to transform 2D data (image) into 1D data, followed by ensemble EMD (EEMD) analysis, i.e., a more robust realization of EMD based on white noise excitation. Tests’ results have shown that PHEEMD exhibits a substantially reduced computational cost compared to other 2D-EMD approaches, preserving, simultaneously, the information lying at the EMD domain; hence, new perspectives for its use in low computational power devices, like portable applications, are feasible.

Descrição

Palavras-chave

Ensemble empirical mode decomposition (EEMD) Fast bidimensional EEMD Peano–Hilbert curves

Contexto Educativo

Citação

Costa et al.: Using Peano–Hilbert space filling curves for fast bidimensional ensemble EMD realization. EURASIP Journal on Advances in Signal Processing 2012 2012:181

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

Springer Science and Business Media

Licença CC

Métricas Alternativas