Logo do repositório
 
Publicação

Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators

dc.contributor.authorFerreira, Milton
dc.contributor.authorVieira, Nelson Felipe Loureiro
dc.date.accessioned2019-02-07T16:40:38Z
dc.date.available2019-02-07T16:40:38Z
dc.date.issued2017-03-01
dc.description.abstractIn this paper we study the multidimensional time fractional diffusion-wave equation where the time fractional derivative is in the Caputo sense with order . Applying operational techniques via Fourier and Mellin transforms we obtain an integral representation of the fundamental solution (FS) of the time fractional diffusion-wave operator. Series representations of the FS are explicitly obtained for any dimension. From these we derive the FS for the time fractional parabolic Dirac operator in the form of integral and series representation. Fractional moments of arbitrary order are also computed. To illustrate our results we present and discuss some plots of the FS for some particular values of the dimension and of the fractional parameter.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationFerreira, M., and Vieira, N. Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators, J. Math. Anal. Appl., 447(1), 2017, 329-353.pt_PT
dc.identifier.doi10.1016/j.jmaa.2016.08.052pt_PT
dc.identifier.issn0022-247X
dc.identifier.urihttp://hdl.handle.net/10400.8/3824
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0022247X1630484X?via%3Dihubpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectTime fractional diffusion-wave operatorpt_PT
dc.subjectTime fractional parabolic Dirac operatorpt_PT
dc.subjectFundamental solutionspt_PT
dc.subjectCaputo fractional derivativept_PT
dc.subjectFractional momentspt_PT
dc.titleFundamental solutions of the time fractional diffusion-wave and parabolic Dirac operatorspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FMAT%2F04106%2F2013/PT
oaire.citation.endPage353pt_PT
oaire.citation.issue1pt_PT
oaire.citation.startPage329pt_PT
oaire.citation.titleJournal of Mathematical Analysis and Applicationspt_PT
oaire.citation.volume447pt_PT
oaire.fundingStream5876
person.familyNameFerreira
person.familyNameVieira
person.givenNameMilton
person.givenNameNelson
person.identifier.ciencia-idCA19-2009-F26D
person.identifier.ciencia-id9418-DDFB-DE9D
person.identifier.orcid0000-0003-1816-8293
person.identifier.orcid0000-0001-8756-4893
person.identifier.ridA-2004-2015
person.identifier.ridH-9130-2013
person.identifier.scopus-author-id12144179800
person.identifier.scopus-author-id55576073000
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationb1460cdc-4ced-46c6-a637-68b425d104dc
relation.isAuthorOfPublicationf530f82c-8351-4c64-a33e-4c34fe4ac22a
relation.isAuthorOfPublication.latestForDiscoveryf530f82c-8351-4c64-a33e-4c34fe4ac22a
relation.isProjectOfPublicationd62eccf5-8596-4ba5-afab-f0f258cfd08e
relation.isProjectOfPublication.latestForDiscoveryd62eccf5-8596-4ba5-afab-f0f258cfd08e

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
FS_Fract_Diffusion_Wave_Post_Print.pdf
Tamanho:
5.58 MB
Formato:
Adobe Portable Document Format
Descrição:
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.32 KB
Formato:
Item-specific license agreed upon to submission
Descrição: