Repository logo
 
Publication

Independent Component Analysis for Extended Time Series in Climate Data

dc.contributor.authorSebastião, Fernando
dc.contributor.authorOliveira, Irene
dc.date.accessioned2014-09-08T09:10:48Z
dc.date.available2014-09-08T09:10:48Z
dc.date.issued2013-01
dc.description.abstractVarious techniques of multivariate data analysis have been proposed to study time series, including the Multi-channel Singular Spectrum Analysis (MSSA). This technique is a Principal Component Analysis (PCA) of the extended matrix of initial lagged series, also called Extended Empirical Orthogonal Function (EEOF) Analysis in a climatological context. This work uses Independent Component Analysis (ICA) as an alternative to the MSSA method, when studying the extended time series matrix. Often, ICA is more appropriate than PCA to analyse time series, since the extraction of Independent Components (ICs) involves higher-order statistics whereas PCA only uses the second-order statistics to obtain the Principal Components (PCs), which are not correlated and are not necessarily independent. An example of time series for meteorological data and some comparative results between the techniques under study are given. Different methods of ordering ICs are also presented, including a new one, which may influence the quality of the reconstruction of the original data.por
dc.description.sponsorshipEste trabalho foi desenvolvido com o patrocínio da FCT.por
dc.identifier.citationSebastião, F. and Oliveira, I. (2013). Independent Component Analysis for Extended Time Series in Climate Data, Advances in Regression, Survival Analysis, Extreme Values, Markov Processes and Other Statistical Applications. Studies in Theoretical and Applied Statistics, 427-436.por
dc.identifier.doi10.1007/978-3-642-34904-1_45
dc.identifier.isbn978-3-642-34903-4
dc.identifier.issn2194-7767
dc.identifier.urihttp://hdl.handle.net/10400.8/1025
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherSpringer Berlin Heidelbergpor
dc.relation.publisherversionhttp://link.springer.com/chapter/10.1007%2F978-3-642-34904-1_45por
dc.subjectIndependent Component Analysispor
dc.subjectPrincipal Component Analysispor
dc.subjectMulti-channel Singular Spectrum Analysispor
dc.subjectTime Seriespor
dc.subjectClimate Datapor
dc.titleIndependent Component Analysis for Extended Time Series in Climate Datapor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceBerlin Heidelbergpor
oaire.citation.endPage436por
oaire.citation.startPage427por
oaire.citation.titleAdvances in Regression, Survival Analysis, Extreme Values, Markov Processes and Other Statistical Applicationspor
oaire.citation.volumeStudies in Theoretical and Applied Statisticspor
person.familyNameSebastião
person.givenNameFernando
person.identifier.ciencia-id7717-1FCA-3D56
person.identifier.orcid0000-0002-8792-4649
person.identifier.scopus-author-id55469915200
rcaap.rightsrestrictedAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication3148059a-b62e-4a9c-8a34-a7b0733545da
relation.isAuthorOfPublication.latestForDiscovery3148059a-b62e-4a9c-8a34-a7b0733545da

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Independent Component Analysis for Extended Time Series in Climate Data_Abstract_2013.pdf
Size:
185.26 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: