Publication
Robust Depth Estimation From Multi-Focus Plenoptic Images
datacite.subject.fos | Ciências Naturais::Ciências da Computação e da Informação | |
datacite.subject.sdg | 03:Saúde de Qualidade | |
datacite.subject.sdg | 10:Reduzir as Desigualdades | |
datacite.subject.sdg | 11:Cidades e Comunidades Sustentáveis | |
dc.contributor.author | Cunha, Francisco | |
dc.contributor.author | Thomaz, Lucas | |
dc.contributor.author | Tavora, Luis M. N. | |
dc.contributor.author | Assunção, Pedro A. A. | |
dc.contributor.author | Fonseca-Pinto, Rui | |
dc.contributor.author | Faria, Sérgio M. M. | |
dc.date.accessioned | 2025-07-09T14:29:47Z | |
dc.date.available | 2025-07-09T14:29:47Z | |
dc.date.issued | 2020-10 | |
dc.description | EISBN - 978-1-7281-6395-6 | |
dc.description | Article number - 9190674; Conference name - 2020 IEEE International Conference on Image Processing, ICIP 2020; Conference city - Abu Dhabi; Conference date - 25 October 2020 - 28 October 2020; Conference code - 165772 | |
dc.description.abstract | This paper describes a robust depth estimation algorithm for multi-focus plenoptic images. The main feature of the proposed method consists of a hybrid template matching scheme built-upon intensity and local phase information, which adapts to the blurriness of neighbouring lenslet microimages. By reducing the impact of defocusblur on the template matching accuracy, the proposed method efficiently handles the varying triangulation baseline over the depth-of-field, thus discarding the need for scene-related information such as the expected range of disparities. Experimental results demonstrate the robustness of the proposed method over the most used commercially available depth estimation algorithm, achieving a reduction of 73% on the depth estimation error. | eng |
dc.description.sponsorship | This work was supported by Programa Operacional Regional do Centro, project PLenoISLA POCI-01-0145-FEDER-028325 and by FCT/MCTES through national funds and when applicable co-funded EU funds under the project UIDB/EEA/50008/2020, Portugal. | |
dc.identifier.citation | F. Cunha, L. A. Thomaz, L. M. N. Tavora, P. A. A. Assunção, R. Fonseca-Pinto and S. M. M. Faria, "Robust Depth Estimation From Multi-Focus Plenoptic Images," 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 2020, pp. 2626-2630, doi: https://doi.org/10.1109/ICIP40778.2020.9190674. | |
dc.identifier.doi | 10.1109/icip40778.2020.9190674 | |
dc.identifier.eissn | 2381-8549 | |
dc.identifier.isbn | 978-1-7281-6396-3 | |
dc.identifier.isbn | 978-1-7281-6395-6 | |
dc.identifier.issn | 15224880 | |
dc.identifier.uri | http://hdl.handle.net/10400.8/13587 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | IEEE Canada | |
dc.relation.hasversion | https://ieeexplore.ieee.org/document/9190674 | |
dc.relation.ispartof | 2020 IEEE International Conference on Image Processing (ICIP) | |
dc.rights.uri | N/A | |
dc.subject | Light Field | |
dc.subject | Depth Estimation | |
dc.subject | Multi-focus | |
dc.subject | Lenslet | |
dc.title | Robust Depth Estimation From Multi-Focus Plenoptic Images | eng |
dc.type | conference paper | |
dspace.entity.type | Publication | |
oaire.citation.conferenceDate | 2020-10 | |
oaire.citation.conferencePlace | Abu Dhabi, United Arab Emirates | |
oaire.citation.endPage | 2630 | |
oaire.citation.startPage | 2626 | |
oaire.citation.title | Proceedings - International Conference on Image Processing, ICIP | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
person.familyName | Thomaz | |
person.familyName | de Oliveira Pegado de Noronha E Távora | |
person.familyName | Assunção | |
person.familyName | Fonseca-Pinto | |
person.familyName | Faria | |
person.givenName | Lucas | |
person.givenName | Luís Miguel | |
person.givenName | Pedro | |
person.givenName | Rui | |
person.givenName | Sergio | |
person.identifier.ciencia-id | 121C-FADA-D750 | |
person.identifier.ciencia-id | 6811-3984-C17B | |
person.identifier.ciencia-id | 681D-C547-B184 | |
person.identifier.ciencia-id | 8815-4101-28DD | |
person.identifier.orcid | 0000-0002-1004-7772 | |
person.identifier.orcid | 0000-0002-8580-1979 | |
person.identifier.orcid | 0000-0001-9539-8311 | |
person.identifier.orcid | 0000-0001-6774-5363 | |
person.identifier.orcid | 0000-0002-0993-9124 | |
person.identifier.rid | A-4827-2017 | |
person.identifier.rid | K-9449-2014 | |
person.identifier.rid | C-5245-2011 | |
person.identifier.scopus-author-id | 6701838347 | |
person.identifier.scopus-author-id | 26039086400 | |
person.identifier.scopus-author-id | 14027853900 | |
relation.isAuthorOfPublication | 5aaecc29-3e2f-49a6-9fd9-7000d9f6085f | |
relation.isAuthorOfPublication | 71940f24-f333-4ab6-abf6-00c7119a07c2 | |
relation.isAuthorOfPublication | 25649bb9-f135-48e8-8d0f-3706b86701d3 | |
relation.isAuthorOfPublication | 7eb9d123-1800-4afd-a2f6-91043353011b | |
relation.isAuthorOfPublication | f69bd4d6-a6ef-4d20-8148-575478909661 | |
relation.isAuthorOfPublication.latestForDiscovery | 5aaecc29-3e2f-49a6-9fd9-7000d9f6085f |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Robust Depth Estimation from Multi-Focus Plenoptic Images.pdf
- Size:
- 155.25 KB
- Format:
- Adobe Portable Document Format
- Description:
- This paper describes a robust depth estimation algorithm for multi-focus plenoptic images. The main feature of the proposed method consists of a hybrid template matching scheme built-upon intensity and local phase information, which adapts to the blurriness of neighbouring lenslet microimages. By reducing the impact of defocusblur on the template matching accuracy, the proposed method efficiently handles the varying triangulation baseline over the depth-of-field, thus discarding the need for scene-related information such as the expected range of disparities. Experimental results demonstrate the robustness of the proposed method over the most used commercially available depth estimation algorithm, achieving a reduction of 73% on the depth estimation error.
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.32 KB
- Format:
- Item-specific license agreed upon to submission
- Description: