Repository logo
 
Publication

Enhanced default risk models with SVM+

datacite.subject.sdg03:Saúde de Qualidade
datacite.subject.sdg07:Energias Renováveis e Acessíveis
datacite.subject.sdg11:Cidades e Comunidades Sustentáveis
dc.contributor.authorRibeiro, Bernardete
dc.contributor.authorSilva, Catarina
dc.contributor.authorChen, Ning
dc.contributor.authorVieira, Armando
dc.contributor.authorCarvalho das Neves, João
dc.date.accessioned2025-11-25T16:07:45Z
dc.date.available2025-11-25T16:07:45Z
dc.date.issued2012-09
dc.description.abstractDefault risk models have lately raised a great interest due to the recent world economic crisis. In spite of many advanced techniques that have extensively been proposed, no comprehensive method incorporating a holistic perspective has hitherto been considered. Thus, the existing models for bankruptcy prediction lack the whole coverage of contextual knowledge which may prevent the decision makers such as investors and financial analysts to take the right decisions. Recently, SVM+ provides a formal way to incorporate additional information (not only training data) onto the learning models improving generalization. In financial settings examples of such non-financial (though relevant) information are marketing reports, competitors landscape, economic environment, customers screening, industry trends, etc. By exploiting additional information able to improve classical inductive learning we propose a prediction model where data is naturally separated into several structured groups clustered by the size and annual turnover of the firms. Experimental results in the setting of a heterogeneous data set of French companies demonstrated that the proposed default risk model showed better predictability performance than the baseline SVM and multi-task learning with SVM.eng
dc.identifier.citationBernardete Ribeiro, Catarina Silva, Ning Chen, Armando Vieira, João Carvalho das Neves, Enhanced default risk models with SVM+, Expert Systems with Applications, Volume 39, Issue 11, 2012, Pages 10140-10152, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2012.02.142.
dc.identifier.doi10.1016/j.eswa.2012.02.142
dc.identifier.issn0957-4174
dc.identifier.urihttp://hdl.handle.net/10400.8/14724
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relation.ispartofExpert Systems with Applications
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectBankruptcy prediction
dc.subjectDefault risk model
dc.subjectSupport vector machines
dc.subjectMulti-task learning
dc.titleEnhanced default risk models with SVM+eng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage10152
oaire.citation.issue11
oaire.citation.startPage10140
oaire.citation.titleExpert Systems with Applications
oaire.citation.volume39
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameSilva
person.givenNameCatarina
person.identifier.ciencia-id1B19-3DDC-BE75
person.identifier.orcid0000-0002-5656-0061
relation.isAuthorOfPublicationee28e079-5ca7-4842-9094-372c40f75c38
relation.isAuthorOfPublication.latestForDiscoveryee28e079-5ca7-4842-9094-372c40f75c38

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0957417412004058-main.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: