Repository logo
 
Publication

Light Field Image Coding using High Order Prediction Training

dc.contributor.authorMonteiro, Ricardo J. S.
dc.contributor.authorNunes, Paulo J. L.
dc.contributor.authorFaria, Sergio
dc.contributor.authorM. M. Rodrigues, Nuno
dc.date.accessioned2025-06-02T14:08:38Z
dc.date.available2025-06-02T14:08:38Z
dc.date.issued2018-09
dc.description.abstractThis paper proposes a new method for light field image coding relying on a high order prediction mode based on a training algorithm. The proposed approach is applied as an Intra prediction method based on a two-stage block-wise high order prediction model that supports geometric transformations up to eight degrees of freedom. Light field images comprise an array of micro-images that are related by complex perspective deformations that cannot be efficiently compensated by state-of-the-art image coding techniques, which are usually based on low order translational prediction models. The proposed prediction mode is able to exploit the non-local spatial redundancy introduced by light field image structure and a training algorithm is applied on different micro-images that are available in the reference region aiming at reducing the amount of signaling data sent to the receiver. The training direction that generates the most efficient geometric transformation for the current block is determined in the encoder side and signaled to the decoder using an index. The decoder is therefore able to repeat the high order prediction training to generate the desired geometric transformation. Experimental results show bitrate savings up to 12.57% and 50.03% relatively to a light field image coding solution based on low order prediction without training and HEVC, respectively.por
dc.identifier.doi10.23919/eusipco.2018.8553150
dc.identifier.isbn978-9-0827-9701-5
dc.identifier.issn2076-1465
dc.identifier.urihttp://hdl.handle.net/10400.8/13060
dc.language.isoeng
dc.peerreviewedyes
dc.publisherIEEE
dc.relation.ispartof2018 26th European Signal Processing Conference (EUSIPCO)
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectLight field image coding
dc.subjectHEVC
dc.subjectHigh order prediction training
dc.subjectGeometric transformations
dc.titleLight Field Image Coding using High Order Prediction Trainingeng
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.conferenceDate2018
oaire.citation.endPage1849
oaire.citation.startPage1845
oaire.citation.title2018 26th European Signal Processing Conference (EUSIPCO)
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameFaria
person.familyNameM. M. Rodrigues
person.givenNameSergio
person.givenNameNuno
person.identifier.ciencia-id8815-4101-28DD
person.identifier.ciencia-id6917-B121-4E34
person.identifier.orcid0000-0002-0993-9124
person.identifier.orcid0000-0001-9536-1017
person.identifier.ridC-5245-2011
person.identifier.scopus-author-id14027853900
person.identifier.scopus-author-id7006052345
relation.isAuthorOfPublicationf69bd4d6-a6ef-4d20-8148-575478909661
relation.isAuthorOfPublicationb4ebe652-7f0e-4e67-adb0-d5ea29fc9e69
relation.isAuthorOfPublication.latestForDiscoveryf69bd4d6-a6ef-4d20-8148-575478909661

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Light Field Image Coding using High Order.pdf
Size:
663.15 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: