Publication
4D Light Field Disparity Map estimation using Krawtchouk Polynomials
datacite.subject.sdg | 03:Saúde de Qualidade | |
datacite.subject.sdg | 10:Reduzir as Desigualdades | |
datacite.subject.sdg | 11:Cidades e Comunidades Sustentáveis | |
dc.contributor.author | Lourenco, Rui | |
dc.contributor.author | Rivero-Castillo, Daniel | |
dc.contributor.author | Thomaz, Lucas A. | |
dc.contributor.author | Assuncao, Pedro A. A. | |
dc.contributor.author | Tavora, Luis M. N. | |
dc.contributor.author | Faria, Sergio M. M. de | |
dc.date.accessioned | 2025-07-16T16:57:45Z | |
dc.date.available | 2025-07-16T16:57:45Z | |
dc.date.issued | 2020-11 | |
dc.description | EISBN - 978-1-7281-8750-1 | |
dc.description | Article number - 9286454; Conference date - 9 November 2020 - 12 November 2020; Conference code - 165865 | |
dc.description.abstract | This work presents an improved method to estimate disparity maps obtained from light field cameras using a novel edge detection algorithm based on Krawtchouk polynomials. The proposed method takes advantage of these polynomials to determine gradient information and find the edges based on automatically estimated weak and strong thresholds. The calculated edges in the gray scale epipolar plane image representation of a light field are then used to improve the accuracy of object boundaries in the the disparity map. The proposed method achieves better results when compared to other edge detection algorithms, both in terms of objective and subjective quality, specifically by reducing the mean squared error and the artifacts in the object boundaries. Furthermore, on average, the proposed method outperforms the state-of-the-art depth estimation algorithms, in terms of the objective quality of the final disparity map, namely for the commonly used HCI dataset. | eng |
dc.description.sponsorship | This work was supported by Programa Operacional Regional do Centro, project PLenoISLA POCI-01-0145-FEDER-028325 and by FCT/MCTES through national funds and when applicable co-funded EU funds under the project UIDB/EEA/50008/2020, Portugal. | |
dc.identifier.citation | R. Lourenco, D. Rivero-Castillo, L. A. Thomaz, P. A. A. Assuncao, L. M. N. Tavora and S. M. M. de Faria, "4D Light Field Disparity Map estimation using Krawtchouk Polynomials," 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA), Paris, France, 2020, pp. 1-6, doi: https://doi.org/10.1109/IPTA50016.2020.9286454. | |
dc.identifier.doi | 10.1109/ipta50016.2020.9286454 | |
dc.identifier.eissn | 2154-512X | |
dc.identifier.isbn | 978-1-7281-8751-8 | |
dc.identifier.isbn | 978-1-7281-8750-1 | |
dc.identifier.issn | 2154-5111 | |
dc.identifier.uri | http://hdl.handle.net/10400.8/13679 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | IEEE Canada | |
dc.relation.hasversion | https://ieeexplore.ieee.org/document/9286454 | |
dc.relation.ispartof | 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA) | |
dc.rights.uri | N/A | |
dc.subject | Light Field | |
dc.subject | Disparity | |
dc.subject | Depth | |
dc.subject | Edge Detection | |
dc.subject | Krawtchouk Polynomials | |
dc.subject | Structure Tensor | |
dc.title | 4D Light Field Disparity Map estimation using Krawtchouk Polynomials | eng |
dc.type | conference paper | |
dspace.entity.type | Publication | |
oaire.citation.conferenceDate | 2020-11 | |
oaire.citation.conferencePlace | Paris, France | |
oaire.citation.title | 2020 10th International Conference on Image Processing Theory, Tools and Applications, IPTA 2020 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
person.familyName | Thomaz | |
person.familyName | Assunção | |
person.familyName | de Oliveira Pegado de Noronha E Távora | |
person.familyName | Faria | |
person.givenName | Lucas | |
person.givenName | Pedro | |
person.givenName | Luís Miguel | |
person.givenName | Sergio | |
person.identifier.ciencia-id | 6811-3984-C17B | |
person.identifier.ciencia-id | 121C-FADA-D750 | |
person.identifier.ciencia-id | 8815-4101-28DD | |
person.identifier.orcid | 0000-0002-1004-7772 | |
person.identifier.orcid | 0000-0001-9539-8311 | |
person.identifier.orcid | 0000-0002-8580-1979 | |
person.identifier.orcid | 0000-0002-0993-9124 | |
person.identifier.rid | A-4827-2017 | |
person.identifier.rid | C-5245-2011 | |
person.identifier.scopus-author-id | 6701838347 | |
person.identifier.scopus-author-id | 14027853900 | |
relation.isAuthorOfPublication | 5aaecc29-3e2f-49a6-9fd9-7000d9f6085f | |
relation.isAuthorOfPublication | 25649bb9-f135-48e8-8d0f-3706b86701d3 | |
relation.isAuthorOfPublication | 71940f24-f333-4ab6-abf6-00c7119a07c2 | |
relation.isAuthorOfPublication | f69bd4d6-a6ef-4d20-8148-575478909661 | |
relation.isAuthorOfPublication.latestForDiscovery | 5aaecc29-3e2f-49a6-9fd9-7000d9f6085f |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 4D Light Field Disparity Map estimation using Krawtchouk Polynomials.pdf
- Size:
- 526.42 KB
- Format:
- Adobe Portable Document Format
- Description:
- This work presents an improved method to estimate disparity maps obtained from light field cameras using a novel edge detection algorithm based on Krawtchouk polynomials. The proposed method takes advantage of these polynomials to determine gradient information and find the edges based on automatically estimated weak and strong thresholds. The calculated edges in the gray scale epipolar plane image representation of a light field are then used to improve the accuracy of object boundaries in the the disparity map. The proposed method achieves better results when compared to other edge detection algorithms, both in terms of objective and subjective quality, specifically by reducing the mean squared error and the artifacts in the object boundaries. Furthermore, on average, the proposed method outperforms the state-of-the-art depth estimation algorithms, in terms of the objective quality of the final disparity map, namely for the commonly used HCI dataset.
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.32 KB
- Format:
- Item-specific license agreed upon to submission
- Description: