Repository logo
 
Publication

Neighborhood Adaptive Loss Function for Deep Learning-Based Point Cloud Coding With Implicit and Explicit Quantization

dc.contributor.authorGuarda, Andre F. R.
dc.contributor.authorRodrigues, Nuno M. M.
dc.contributor.authorPereira, Fernando
dc.date.accessioned2022-11-11T10:50:39Z
dc.date.available2022-11-11T10:50:39Z
dc.date.issued2021-07-01
dc.date.updated2022-11-08T17:21:49Z
dc.description.abstractAs the interest in deep learning tools continues to rise, new multimedia research fields begin to discover its potential. Both image and point cloud coding are good examples of technologies, where deep learning-based solutions have recently displayed very competitive performance. In this context, this article brings two novel contributions to the point cloud geometry coding state-of-the-art; first, a novel neighborhood adaptive distortion metric to be used in the training loss function, which allows significantly improving the rate-distortion performance with commonly used objective quality metrics; second, an explicit quantization approach at the training and coding times to generate varying rate/quality with a single trained deep learning coding model, effectively reducing the training complexity and storage requirements. The result is an improved deep learning-based point cloud geometry coding solution, which is both more compression efficient and less demanding in training complexity and storage.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationAFR Guarda, NMM Rodrigues e F. Pereira, "Neighborhood Adaptive Loss Function for Deep Learning-Based Point Cloud Coding With Implicit and Explicit Quantization", in IEEE MultiMedia , vol. 28, não. 3, pp. 107-116, 1º de julho-setembro. 2021, doi: 10.1109/MMUL.2020.3046691.pt_PT
dc.identifier.doi10.1109/mmul.2020.3046691pt_PT
dc.identifier.issn1070-986X
dc.identifier.issn1941-0166
dc.identifier.slugcv-prod-2602442
dc.identifier.urihttp://hdl.handle.net/10400.8/7846
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9302734pt_PT
dc.titleNeighborhood Adaptive Loss Function for Deep Learning-Based Point Cloud Coding With Implicit and Explicit Quantizationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage116pt_PT
oaire.citation.issue3pt_PT
oaire.citation.startPage107pt_PT
oaire.citation.titleIEEE MultiMediapt_PT
oaire.citation.volume28pt_PT
person.familyNameM. M. Rodrigues
person.givenNameNuno
person.identifier.orcid0000-0001-9536-1017
person.identifier.scopus-author-id7006052345
rcaap.cv.cienciaid6917-B121-4E34 | NUNO MIGUEL MORAIS RODRIGUES
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationb4ebe652-7f0e-4e67-adb0-d5ea29fc9e69
relation.isAuthorOfPublication.latestForDiscoveryb4ebe652-7f0e-4e67-adb0-d5ea29fc9e69

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Neighborhood_Adaptive_Loss_Function_for_Deep_Learning-Based_Point_Cloud_Coding_With_Implicit_and_Explicit_Quantization.pdf
Size:
2.86 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.33 KB
Format:
Item-specific license agreed upon to submission
Description: