Repository logo
 
Publication

Assessing the relevance of load profiling information in electrical load forecasting based on neural network models

datacite.subject.sdg03:Saúde de Qualidade
datacite.subject.sdg07:Energias Renováveis e Acessíveis
datacite.subject.sdg11:Cidades e Comunidades Sustentáveis
dc.contributor.authorSousa, J.C.
dc.contributor.authorNeves, L.P.
dc.contributor.authorH.M. Jorge
dc.date.accessioned2025-11-24T16:52:57Z
dc.date.available2025-11-24T16:52:57Z
dc.date.issued2012-09
dc.description.abstractThe article is focused on evaluating the relevance of load profiling information in electrical load forecasting, using neural networks as the forecasting methodology. Different models, with and without load profiling information, were tested and compared, and, the importance of the different inputs was investigated, using the concept of partial derivatives to understand the relevance of including this type of data in the input space. The paper presents a model for the day ahead load profile prediction for an area with many consumers. The results were analyzed with a simulated load diagram (to illustrate a distribution feeder) and also with a specific output of a 60/15 kV real distribution substation that feeds a small town. The adopted methodology was successfully implemented and resulted in reducing the mean absolute percentage error between 0.5% and 16%, depending on the nature of the concurrent methodology used and the forecasted day, with a major benefit regarding the treatment of special days (holidays). The results illustrate an interesting potential for the use of the load profiling information in forecasting.eng
dc.description.sponsorshipThe authors gratefully acknowledge the contribution of EDP – Energias de Portugal in making available the consumption data of some local distribution substations for the sake of this study. This work has been partially supported by FCT through Projects PEst-C/EEI/UI0308/2011 and MIT/SET/0018/2009.
dc.identifier.citationJ.C. Sousa, L.P. Neves, H.M. Jorge, Assessing the relevance of load profiling information in electrical load forecasting based on neural network models, International Journal of Electrical Power & Energy Systems, Volume 40, Issue 1, 2012, Pages 85-93, ISSN 0142-0615, https://doi.org/10.1016/j.ijepes.2012.02.008.
dc.identifier.doi10.1016/j.ijepes.2012.02.008
dc.identifier.issn0142-0615
dc.identifier.urihttp://hdl.handle.net/10400.8/14721
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relation.hasversionhttps://www.sciencedirect.com/science/article/pii/S014206151200035X
dc.relation.ispartofInternational Journal of Electrical Power & Energy Systems
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subjectLoad forecast
dc.subjectLoad profiling
dc.subjectNeural networks
dc.subjectSensitivity analysis
dc.titleAssessing the relevance of load profiling information in electrical load forecasting based on neural network modelseng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage93
oaire.citation.issue1
oaire.citation.startPage85
oaire.citation.titleInternational Journal of Electrical Power & Energy Systems
oaire.citation.volume40
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameSousa
person.familyNamePires Neves
person.givenNameJoão
person.givenNameLuís
person.identifier.ciencia-idC816-809B-4484
person.identifier.ciencia-id591E-30D4-2C97
person.identifier.gsid55971568600
person.identifier.orcid0000-0002-7567-4910
person.identifier.orcid0000-0002-2600-5622
person.identifier.scopus-author-id34977315800
relation.isAuthorOfPublication7678f744-5e50-4458-8811-33e1fbc63013
relation.isAuthorOfPublication5315d446-6d51-4d95-aeaa-72b6a44a4838
relation.isAuthorOfPublication.latestForDiscovery7678f744-5e50-4458-8811-33e1fbc63013

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S014206151200035X-main.pdf
Size:
678.61 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: