Logo do repositório
 
Publicação

Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators: the Riemann-Liouville case

dc.contributor.authorFerreira, Milton
dc.contributor.authorVieira, Nelson Felipe Loureiro
dc.date.accessioned2019-02-07T16:00:47Z
dc.date.available2019-02-07T16:00:47Z
dc.date.issued2016-06
dc.description.abstractIn this paper, we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator $\Delta_+^{(\alpha,\beta,\gamma)}:= D_{x_0^+}^{1+\alpha} +D_{y_0^+}^{1+\beta} +D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$, and the fractional derivatives $D_{x_0^+}^{1+\alpha}$, $D_{y_0^+}^{1+\beta}$, $D_{z_0^+}^{1+\gamma}$ are in the Riemann-Liouville sense. Applying operational techniques via two-dimensional Laplace transform we describe a complete family of eigenfunctions and fundamental solutions of the operator $\Delta_+^{(\alpha,\beta,\gamma)}$ in classes of functions admitting a summable fractional derivative. Making use of the Mittag-Leffler function, a symbolic operational form of the solutions is presented. From the obtained family of fundamental solutions we deduce a family of fundamental solutions of the fractional Dirac operator, which factorizes the fractional Laplace operator. We apply also the method of separation of variables to obtain eigenfunctions and fundamental solutions.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationFerreira M., and Vieira N., Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators: the Riemann-Liouville case, Complex Anal. Oper. Theory, 10(5), 2016, 1081-1100pt_PT
dc.identifier.doi10.1007/s11785-015-0529-9pt_PT
dc.identifier.issn1661-8254
dc.identifier.other1661-8262
dc.identifier.urihttp://hdl.handle.net/10400.8/3822
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Nature [academic journals on nature.com]pt_PT
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11785-015-0529-9pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectFractional partial differential equationspt_PT
dc.subjectFractional Laplace and Dirac operatorspt_PT
dc.subjectRiemann-Liouville derivatives and integrals of fractional orderpt_PT
dc.subjectEigenfunctions and fundamental solutionpt_PT
dc.subjectLaplace transformpt_PT
dc.subjectMittag-Leffler functionpt_PT
dc.titleEigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators: the Riemann-Liouville casept_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage1100pt_PT
oaire.citation.issue5pt_PT
oaire.citation.startPage1081pt_PT
oaire.citation.titleComplex Analysis and Operator Theorypt_PT
oaire.citation.volume10pt_PT
person.familyNameFerreira
person.familyNameVieira
person.givenNameMilton
person.givenNameNelson
person.identifier.ciencia-idCA19-2009-F26D
person.identifier.ciencia-id9418-DDFB-DE9D
person.identifier.orcid0000-0003-1816-8293
person.identifier.orcid0000-0001-8756-4893
person.identifier.ridA-2004-2015
person.identifier.ridH-9130-2013
person.identifier.scopus-author-id12144179800
person.identifier.scopus-author-id55576073000
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationb1460cdc-4ced-46c6-a637-68b425d104dc
relation.isAuthorOfPublicationf530f82c-8351-4c64-a33e-4c34fe4ac22a
relation.isAuthorOfPublication.latestForDiscoveryf530f82c-8351-4c64-a33e-4c34fe4ac22a

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
Eig_FS_FLDO_RL_Post_Print.pdf
Tamanho:
399.58 KB
Formato:
Adobe Portable Document Format
Descrição:
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.32 KB
Formato:
Item-specific license agreed upon to submission
Descrição: