Repository logo
 
Publication

Polymer Melt Stability Monitoring in Injection Moulding Using LSTM-Based Time-Series Models

datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
datacite.subject.fosEngenharia e Tecnologia::Engenharia dos Materiais
datacite.subject.sdg08:Trabalho Digno e Crescimento Económico
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
datacite.subject.sdg10:Reduzir as Desigualdades
dc.contributor.authorCosta, Pedro
dc.contributor.authorMendes, Sílvio Priem
dc.contributor.authorLoureiro, Paulo
dc.date.accessioned2026-01-19T15:57:28Z
dc.date.available2026-01-19T15:57:28Z
dc.date.issued2025-12-23
dc.descriptionThis article belongs to the Section Artificial Intelligence in Polymer Science.
dc.description.abstractThis work presents a data-driven framework for early detection of polymer melt instability in industrial injection moulding using Long Short-Term Memory (LSTM) time-series models. The study uses six months of continuous production data comprising approximately 280,000 injection cycles collected from a fully operational thermoplastic injection line. Because melt behaviour evolves gradually and conventional threshold-based monitoring often fails to capture these transitions, the proposed approach models temporal patterns in torque, pressure, temperature, and rheology to identify drift conditions that precede quality degradation. A physically informed labelling strategy enables supervised learning even with sparse defect annotations by defining volatile zones as short time windows preceding operator-identified non-conforming parts, allowing the model to recognise instability windows minutes before defects emerge. The framework is designed for deployment on standard machine signals without requiring additional sensors, supporting proactive process adjustments, improved stability, and reduced scrap in injection moulding environments. These findings demonstrate the potential of temporal deep-learning models to enhance real-time monitoring and contribute to more robust and adaptive manufacturing operations.eng
dc.description.sponsorshipThis work was funded by national funds through FCT—Fundação para a Ciência e a Tecnologia, I.P., under project UID/4524/2025 (https://doi.org/10.54499/UID/04524/2025, accessed on 30 June 2025.
dc.identifier.citationCosta, P., Mendes, S. P., & Loureiro, P. (2026). Polymer Melt Stability Monitoring in Injection Moulding Using LSTM-Based Time-Series Models. Polymers, 18(1), 32. https://doi.org/10.3390/polym18010032
dc.identifier.doi10.3390/polym18010032
dc.identifier.issn2073-4360
dc.identifier.urihttp://hdl.handle.net/10400.8/15405
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.relationCentro de Investigação em Informática e Comunicações
dc.relation.hasversionhttps://www.mdpi.com/2073-4360/18/1/32
dc.relation.ispartofPolymers
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectDefect prediction
dc.subjectLSTM
dc.subjectInjection moulding
dc.subjectReal production data
dc.titlePolymer Melt Stability Monitoring in Injection Moulding Using LSTM-Based Time-Series Modelseng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCentro de Investigação em Informática e Comunicações
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FCEC%2F4524%2F2016/PT
oaire.citation.endPage14
oaire.citation.issue1
oaire.citation.startPage1
oaire.citation.titlePolymers
oaire.citation.volume18
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameMendes
person.familyNameLoureiro
person.givenNameSilvio
person.givenNamePaulo
person.identifier.ciencia-id1513-13E9-C8A6
person.identifier.orcid0000-0002-1667-5745
person.identifier.orcid0000-0002-6711-1384
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublicatione23cc83a-4e70-4088-a73d-075808bda28f
relation.isAuthorOfPublication5ae39951-7dce-40d0-9bfc-6ab94e100d6c
relation.isAuthorOfPublication.latestForDiscovery5ae39951-7dce-40d0-9bfc-6ab94e100d6c
relation.isProjectOfPublication28a4cabb-bedf-4064-b404-c395edb9b596
relation.isProjectOfPublication.latestForDiscovery28a4cabb-bedf-4064-b404-c395edb9b596

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
polymers-18-00032.pdf
Size:
324.46 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: