Publication
Monoids and pointed S-protomodular categories
dc.contributor.author | Bourn, Dominique | |
dc.contributor.author | Martins-Ferreira, Nelson | |
dc.contributor.author | Montoli, Andrea | |
dc.contributor.author | Sobral, Manuela | |
dc.date.accessioned | 2025-07-14T15:03:29Z | |
dc.date.available | 2025-07-14T15:03:29Z | |
dc.date.issued | 2016-04-11 | |
dc.description.abstract | We investigate the notion of pointed S-protomodular category, with respect to a suitable class S of points, and we prove that these categories satisfy, relatively to the class S, many partial aspects of the properties of Mal’tsev and protomodular categories, like the split short five lemma for S-split exact sequences, or the fact that a reflexive S-relation is transitive. The main examples of S-protomodular categories are the category of monoids and, more generally, any category of monoids with operations, where the class S is the class of Schreier points. | eng |
dc.description.sponsorship | This work was partially supported by the Centre for Mathematics of the University of Coimbra – UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MEC and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020, by the FCT project PTDC/MAT/120222/2010 and grant number SFRH/BPD/69661/2010, and also by ESTG and CDRSP from the Polytechnical Institute of Leiria. | |
dc.identifier.doi | 10.4310/hha.2016.v18.n1.a9 | |
dc.identifier.issn | 1532-0073 | |
dc.identifier.issn | 1532-0081 | |
dc.identifier.uri | http://hdl.handle.net/10400.8/13632 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | International Press of Boston | |
dc.relation | Categorical Methods in Non Abelian Algebra | |
dc.relation.hasversion | https://link.intlpress.com/JDetail/1805806318906654721 | |
dc.relation.ispartof | Homology, Homotopy and Applications | |
dc.rights.uri | N/A | |
dc.subject | Fibration of points | |
dc.subject | Mal’tsev and protomodular categories | |
dc.subject | Monoid with operations | |
dc.subject | Schreier split epimorphism | |
dc.subject | Pointed -protomodular category | |
dc.title | Monoids and pointed S-protomodular categories | eng |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Categorical Methods in Non Abelian Algebra | |
oaire.awardURI | http://hdl.handle.net/10400.8/13336 | |
oaire.citation.endPage | 172 | |
oaire.citation.issue | 1 | |
oaire.citation.startPage | 151 | |
oaire.citation.title | Homology, Homotopy and Applications | |
oaire.citation.volume | 18 | |
oaire.fundingStream | 5876-PPCDTI | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
person.familyName | Martins-Ferreira | |
person.givenName | Nelson | |
person.identifier | 485301 | |
person.identifier.ciencia-id | B115-B65E-24AA | |
person.identifier.orcid | 0000-0002-4199-7367 | |
person.identifier.rid | N-1699-2013 | |
person.identifier.scopus-author-id | 24598020700 | |
relation.isAuthorOfPublication | 52406f6a-2c36-4e9a-9996-d3cc719d46bf | |
relation.isAuthorOfPublication.latestForDiscovery | 52406f6a-2c36-4e9a-9996-d3cc719d46bf | |
relation.isProjectOfPublication | 7e052e00-1745-436a-b3ef-06d50b6eb601 | |
relation.isProjectOfPublication.latestForDiscovery | 7e052e00-1745-436a-b3ef-06d50b6eb601 |