Repository logo
 
Publication

Convolutional-LSTM networks and generalization in forecasting of household photovoltaic generation

dc.contributor.authorCosta, Rogério Luís de C.
dc.date.accessioned2022-10-11T13:16:30Z
dc.date.available2022-10-11T13:16:30Z
dc.date.issued2022-11
dc.date.updated2022-10-10T09:39:06Z
dc.description.abstractSolar panels can generate energy to meet almost all of the energy needs of a house. Batteries store energy generated during daylight hours for future use. Also, it may be possible to sell extra electricity back to distribution companies. However, the efficiency of photovoltaic systems varies according to several factors, such as the solar exposition at ground levels, atmospheric temperature, and relative humidity, and predicting the energy generated by such a system is not easy. This work is on the use of deep learning to predict the generation of photovoltaic energy by residential systems. We use real-world data to evaluate the performance of LSTM, Convolutional, and hybrid Convolutional-LSTM networks in predicting photovoltaic power generation at different forecasting horizons. We also assess the generalizability of the solutions, evaluating the use of models trained with data aggregated by geographic areas to predict the energy generation by individual systems. We compare the performance of deep networks with Prophet in terms of MAE, RMSE, and NRMSE, and in most cases, Convolutional and Convolutional-LSTM networks achieve the best results. Using models trained with region-based data to predict the power generation of individual systems is confirmed to be a promising approach.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationCosta, Rogério Luís de C. (2022). Convolutional-LSTM networks and generalization in forecasting of household photovoltaic generation. Engineering Applications of Artificial Intelligence, 116. https://doi.org/10.1016/j.engappai.2022.105458pt_PT
dc.identifier.doihttps://doi.org/10.1016/j.engappai.2022.105458pt_PT
dc.identifier.issn0952-1976
dc.identifier.slugcv-prod-3056327
dc.identifier.urihttp://hdl.handle.net/10400.8/7759
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationCEECI2018/FCTpt_PT
dc.relationResearch Center in Informatics and Communications
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0952197622004481pt_PT
dc.subjectTime series forecastingpt_PT
dc.subjectPhotovoltaic power generationpt_PT
dc.subjectDeep learningpt_PT
dc.subjectLSTMpt_PT
dc.subjectConvolutional neural networkspt_PT
dc.titleConvolutional-LSTM networks and generalization in forecasting of household photovoltaic generationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Center in Informatics and Communications
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04524%2F2020/PT
oaire.citation.startPage105458pt_PT
oaire.citation.titleEngineering Applications of Artificial Intelligencept_PT
oaire.citation.volume116pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNamede Carvalho Costa
person.givenNameRogério Luís
person.identifier.ciencia-id7717-9573-0C0F
person.identifier.orcid0000-0003-2306-7585
person.identifier.ridA-7940-2016
person.identifier.scopus-author-id7801604983
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.cv.cienciaid7717-9573-0C0F | Rogério Luís de Carvalho Costa
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication5654d934-3fa0-4afb-9b3b-f2736104924c
relation.isAuthorOfPublication.latestForDiscovery5654d934-3fa0-4afb-9b3b-f2736104924c
relation.isProjectOfPublication67435020-fe0d-4b46-be85-59ee3c6138c7
relation.isProjectOfPublication.latestForDiscovery67435020-fe0d-4b46-be85-59ee3c6138c7

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0952197622004481.pdf
Size:
2.26 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.33 KB
Format:
Item-specific license agreed upon to submission
Description: