Logo do repositório
 
A carregar...
Miniatura
Publicação

On the application of the method of fundamental solutions to boundary value problems with jump discontinuities

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
1-s2.0-S1568494618301212-main.pdf2.14 MBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Two meshfree methods are proposed for the numerical solution of boundary value problems (BVPs) for the Laplace equation, coupled with boundary conditions with jump discontinuities. In the first case, the BVP is solved in two steps, using a subtraction of singularity approach. Here, the singular subproblem is solved analytically while the classical method of fundamental solutions (MFS) is applied for the solution of the regular subproblem. In the second case, the total BVP is solved using a variant of the MFS where its approximation basis is enriched with a set of harmonic functions with singular traces on the boundary of the domain. The same singularity-capturing functions, motivated by the boundary element method (BEM), are used for the singular part of the solution in the first method and for augmenting the MFS basis in the second method. Comparative numerical results are presented for 2D problems with discontinuous Dirichlet boundary conditions. In particular, the inappropriate oscillatory behavior of the classical MFS solution, due to the Gibbs phenomenon, is shown to vanish.

Descrição

Palavras-chave

Enrichment technique Method of fundamental solutions Meshfree method Singular boundary conditions Harmonic boundary value problems

Contexto Educativo

Citação

Carlos J.S. Alves, Svilen S. Valtchev, On the application of the method of fundamental solutions to boundary value problems with jump discontinuities, Applied Mathematics and Computation, Volume 320, 2018, Pages 61-74, ISSN 0096-3003, https://doi.org/10.1016/j.amc.2017.09.018.

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

Elsevier BV

Métricas Alternativas