Repository logo
 
Publication

Recognition of human activity based on sparse data collected from smartphone sensors

datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
datacite.subject.sdg08:Trabalho Digno e Crescimento Económico
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
dc.contributor.authorGordalina, Goncalo
dc.contributor.authorCorreia, Pedro
dc.contributor.authorPires, Gabriel
dc.contributor.authorOliveira, Luis
dc.contributor.authorFigueiredo, Maria João
dc.contributor.authorMartinho, Ricardo
dc.contributor.authorRijo, Rui, Rui Pedro Charters Lopes
dc.contributor.authorAssunção, Pedro
dc.contributor.authorSeco, Maria Alexandra Abreu Henriques
dc.contributor.authorFonseca-Pinto, Rui
dc.date.accessioned2025-12-09T18:18:15Z
dc.date.available2025-12-09T18:18:15Z
dc.date.issued2019-02
dc.description.abstractThis paper proposes a method of human activity monitoring based on the regular use of sparse acceleration data and GPS positioning collected during smartphone daily utilization. The application addresses, in particular, the elderly population with regular activity patterns associated with daily routines. The approach is based on the clustering of acceleration and GPS data to characterize the user’s pattern activity and localization for a given period. The current activity pattern is compared to the one obtained by the learned data patterns, generating alarms of abnormal activity and unusual location. The obtained results allow to consider that the usage of the proposed method in real environments can be beneficial for activity monitoring without using complex sensor networks.por
dc.description.sponsorshipThis work has been financially supported by the IC&DT Project MOVIDA: SAICT-POL/23878/2016 | CENTRO-01-0145-FEDER-023878 and Project VITASENIOR-MT: SAICT-POL/23659/2016 | CENTRO-01-0145-FEDER-023659 with FEDER funding through programs CENTRO2020 and FCT.
dc.identifier.citationFigueiredo, J., Gordalina, G., Correia, P. F., Pires, G., Oliveira, L. M., Martinho, R., Rijo, R., Assunção, P. A., Seco, A. & Fonseca-Pinto, R. (2019, February). Recognition of human activity based on sparse data collected from smartphone sensors. In Proceedings of the IEEE 6th Portuguese Meeting on Bioengineering (ENBENG 2019). IEEE. https://doi.org/10.1109/ENBENG.2019.8692447
dc.identifier.doi10.1109/enbeng.2019.8692447
dc.identifier.urihttp://hdl.handle.net/10400.8/14964
dc.language.isoeng
dc.peerreviewedyes
dc.publisherIEEE Canada
dc.relation.hasversionhttps://ieeexplore.ieee.org/document/8692447
dc.relation.ispartof2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG)
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectAcceleration
dc.subjectGlobal Positioning System
dc.subjectClustering algorithms
dc.subjectFeature extraction
dc.subjectSensors
dc.subjectMonitoring
dc.subjectPrincipal component analysis
dc.subjectsmartphone sensors
dc.titleRecognition of human activity based on sparse data collected from smartphone sensorseng
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.conferencePlaceLisbon, Portugal
oaire.citation.endPage4
oaire.citation.startPage1
oaire.citation.title2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG)
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameFigueiredo
person.familyNameMartinho
person.familyNameRijo
person.familyNameAssunção
person.familyNameAbreu Henriques Seco
person.familyNameFonseca-Pinto
person.givenNameMaria João
person.givenNameRicardo
person.givenNameRui
person.givenNamePedro
person.givenNameMaria Alexandra
person.givenNameRui
person.identifier.ciencia-idF51E-9BB5-EF92
person.identifier.ciencia-id6811-3984-C17B
person.identifier.ciencia-id681D-C547-B184
person.identifier.orcid0000-0002-6679-6908
person.identifier.orcid0000-0003-1157-7510
person.identifier.orcid0000-0002-9348-0474
person.identifier.orcid0000-0001-9539-8311
person.identifier.orcid0000-0001-9905-9886
person.identifier.orcid0000-0001-6774-5363
person.identifier.ridK-8277-2013
person.identifier.ridA-4827-2017
person.identifier.ridK-9449-2014
person.identifier.scopus-author-id25823103700
person.identifier.scopus-author-id36861366200
person.identifier.scopus-author-id6701838347
person.identifier.scopus-author-id26039086400
relation.isAuthorOfPublication7f4d812d-5c0a-4fcc-8e6e-e8f04046a3a6
relation.isAuthorOfPublicationb2a74e46-f06c-4dcd-8c64-8f78f1d55440
relation.isAuthorOfPublicatione69d7599-392c-4f8f-a96a-bf0a0d15c8b1
relation.isAuthorOfPublication25649bb9-f135-48e8-8d0f-3706b86701d3
relation.isAuthorOfPublicationdfd747e6-b056-4aa4-933c-da3cf4341022
relation.isAuthorOfPublication7eb9d123-1800-4afd-a2f6-91043353011b
relation.isAuthorOfPublication.latestForDiscovery7f4d812d-5c0a-4fcc-8e6e-e8f04046a3a6

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Recognition of human activity based on sparse data collected from smartphone sensors.pdf
Size:
364.04 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.32 KB
Format:
Item-specific license agreed upon to submission
Description: