Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Improving multiscale recurrent pattern image coding with least-squares prediction modePublication . Graziosi, Danillo B.; Rodrigues, Nuno M. M.; Silva, Eduardo A. B. da; Faria, Sérgio M. M. de; Carvalho, Murilo B. de; Faria, Sergio; M. M. Rodrigues, Nuno;The Multidimensional Multiscale Parser-based (MMP) image coding algorithm, when combined with flexible partitioning and predictive coding techniques (MMP-FP), provides state-of-the-art performance. In this paper we investigate the use of adaptive least-squares prediction in MMP. The linear prediction coefficients implicitly embed the local texture characteristics, and are computed based on a block’s causal neighborhood (composed of already reconstructed data). Thus, the intra prediction mode is adaptively adjusted according to the local context and no extra overhead is needed for signaling the coefficients. We add this new context-adaptive linear prediction mode to the other MMP prediction modes, that are based on the ones used in H.264/AVC; the best mode is chosen through rate-distortion optimization. Simulation results show that least-squares prediction is able to significantly increase MMP-FPs rate-distortion performance for smooth images, leading to better results than the ones of state-of-theart, transform-based methods. Yet with the addition of least-squares prediction MMP-FP presents no performance loss when used for encoding non-smooth images, such as text and graphics.
- Image Coding Using Generalized Predictors Based on Sparsity and Geometric TransformationsPublication . Lucas, Luís F. R.; M. M. Rodrigues, Nuno; Silva, Eduardo A. B. da; Pagliari, Carla L.; Faria, Sergio
- Intra Predictive Depth Map Coding Using Flexible Block PartitioningPublication . Lucas, Luis F. R.; Wegner, Krzysztof; M. M. Rodrigues, Nuno; Pagliari, Carla L.; Silva, Eduardo A. B. da; Faria, SergioA complete encoding solution for efficient intra-based depth map compression is proposed in this paper. The algorithm, denominated predictive depth coding (PDC), was specifically developed to efficiently represent the characteristics of depth maps, mostly composed by smooth areas delimited by sharp edges. At its core, PDC involves a directional intra prediction framework and a straightforward residue coding method, combined with an optimized flexible block partitioning scheme. In order to improve the algorithm in the presence of depth edges that cannot be efficiently predicted by the directional modes, a constrained depth modeling mode, based on explicit edge representation, was developed. For residue coding, a simple and low complexity approach was investigated, using constant and linear residue modeling, depending on the prediction mode. The performance of the proposed intra depth map coding approach was evaluated based on the quality of the synthesized views using the encoded depth maps and original texture views. The experimental tests based on all intra configuration demonstrated the superior rate-distortion performance of PDC, with average bitrate savings of 6%, when compared with the current state-of-the-art intra depth map coding solution present in the 3D extension of a high-efficiency video coding (3D-HEVC) standard. By using view synthesis optimization in both PDC and 3D-HEVC encoders, the average bitrate savings increase to 14.3%. This suggests that the proposed method, without using transform-based residue coding, is an efficient alternative to the current 3D-HEVC algorithm for intra depth map coding.