CDRsp - Artigos em revistas internacionais
Permanent URI for this collection
Browse
Browsing CDRsp - Artigos em revistas internacionais by Subject "316L stainless steel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- 316L stainless steel mechanical and tribological behavior—A comparison between selective laser melting, hot pressing and conventional castingPublication . Bartolomeu, F.; Buciumeanu, M.; Pinto, E.; Alves, Nuno; Carvalho, O.; Silva, F: S.; Miranda, G.This work presents a comprehensive study on the influence of three different processing technologies (Selective Laser Melting, Hot Pressing and conventional casting) on the microstructure, mechanical and wear behavior of an austenitic 316L Stainless Steel.Acorrelation between the processing technologies,the obtained microstructure and the mechanical and wear behavior was achieved. The results showed that the highest mechanical properties and tribological performance were obtained for 316L SS specimens produced by Selective Laser Melting, when compared to Hot Pressing and conventional casting. The high wear and mechanical performance of 316L Stainless Steel fabricated by Selective Laser Melting are mainly due to the finer microstructure, induced by the process. In this sense, Selective Laser Melting seems a promising method to fabricate customized 316L SS implants with improved mechanical and wear performance
- Predictive models for physical and mechanical properties of 316L stainless steel produced by selective laser meltingPublication . Miranda, G.; Faria, S.; Bartolomeu, F.; Pinto, Elodie; Madeira, S.; Mateus, Artur; P.Carreira; Alves, Nuno; Silva, F.S.; Carvalho, O.Selective Laser Melting (SLM) processing parameters are known to greatly influence 316L stainless steel final properties. A simple energy density calculation is insufficient for explaining mechanical and physical properties as well as microstructural characteristics, which are known to significantly influence these parts performance. In fact, parts produced by using different combinations of processing parameters, even presenting similar energy density, can display different properties. Thus, it is necessary to assess their influence as isolated parameters but also their interactions. This work presents a study on the influence of several SLM processing parameters (laser power, scanning speed and scanning spacing) on density, hardness and shear strength of 316L stainless steel. The influence of these processing parameters on the abovementioned properties is assessed by using statistical analysis. In order to find the significant main factors and their interactions, analysis of variance (ANOVA) is used. Furthermore, in order to assess the effect of the part building orientation, two different building strategies were tested. The influence of these processing parameters on shear strength, hardness and density were assessed for the two building strategies, thus resulting six different models that can be used as predictive design tools. The microstructures experimentally obtained were analyzed, discussed and correlated with the obtained models.