Percorrer por autor "Vieira, Nelson Felipe Loureiro"
A mostrar 1 - 3 de 3
Resultados por página
Opções de ordenação
- Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators using Caputo derivativesPublication . Ferreira, Milton; Vieira, Nelson Felipe LoureiroIn this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator ${}^C\!\Delta_+^{(\alpha,\beta,\gamma)}:= {}^C\!D_{x_0^+}^{1+\alpha} +{}^C\!D_{y_0^+}^{1+\beta} +{}^C\!D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$ and the fractional derivatives ${}^C\!D_{x_0^+}^{1+\alpha}$, ${}^C\!D_{y_0^+}^{1+\beta}$, ${}^C\!D_{z_0^+}^{1+\gamma}$ are in the Caputo sense. Applying integral transform methods we describe a complete family of eigenfunctions and fundamental solutions of the operator ${}^C\!\Delta_+^{(\alpha,\beta,\gamma)}$ in classes of functions admitting a summable fractional derivative. The solutions are expressed using the Mittag-Leffler function. From the family of fundamental solutions obtained we deduce a family of fundamental solutions of the corresponding fractional Dirac operator, which factorizes the fractional Laplace operator introduced in this paper.
- Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators: the Riemann-Liouville casePublication . Ferreira, Milton; Vieira, Nelson Felipe LoureiroIn this paper, we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator $\Delta_+^{(\alpha,\beta,\gamma)}:= D_{x_0^+}^{1+\alpha} +D_{y_0^+}^{1+\beta} +D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$, and the fractional derivatives $D_{x_0^+}^{1+\alpha}$, $D_{y_0^+}^{1+\beta}$, $D_{z_0^+}^{1+\gamma}$ are in the Riemann-Liouville sense. Applying operational techniques via two-dimensional Laplace transform we describe a complete family of eigenfunctions and fundamental solutions of the operator $\Delta_+^{(\alpha,\beta,\gamma)}$ in classes of functions admitting a summable fractional derivative. Making use of the Mittag-Leffler function, a symbolic operational form of the solutions is presented. From the obtained family of fundamental solutions we deduce a family of fundamental solutions of the fractional Dirac operator, which factorizes the fractional Laplace operator. We apply also the method of separation of variables to obtain eigenfunctions and fundamental solutions.
- Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operatorsPublication . Ferreira, Milton; Vieira, Nelson Felipe LoureiroIn this paper we study the multidimensional time fractional diffusion-wave equation where the time fractional derivative is in the Caputo sense with order . Applying operational techniques via Fourier and Mellin transforms we obtain an integral representation of the fundamental solution (FS) of the time fractional diffusion-wave operator. Series representations of the FS are explicitly obtained for any dimension. From these we derive the FS for the time fractional parabolic Dirac operator in the form of integral and series representation. Fractional moments of arbitrary order are also computed. To illustrate our results we present and discuss some plots of the FS for some particular values of the dimension and of the fractional parameter.
