Browsing by Author "Pascoal-Faria, P."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Comparison by computer fluid dynamics of the drag force acting upon two helmets for wheelchair racersPublication . Forte, P; Marinho, D. A.; Morouço, P; Pascoal-Faria, P.; Barbosa, T. M.The aim of this study was to compare the drag force created by two helmets (time trial and road)used by a wheelchair racer. The head and helmet of the racer were scanned to obtain the3D models. Numerical simulation was run on Fluent, having as output the drag force for both helmets (road and time trial) in two different positions (0º and 90º) and increasing velocities (from 2.0 to 6.5 m/s). The greatest aerodynamic drag was noted wearing a time trial helmet in 90º ranging from 0.1025N to 0.8475N; this was also the position with the highest drag. The velocity with higher drag for booth helmets was at 6.5 m/s. The time trial helmet at 0º had the lower aerodynamic drag, compared with the same position of road helmet. The drag force seems to be lower wearing the time trial helmet and keeping the 0º position and, thus, should be considered for sprinting events.
- A Computer Simulation of the Nitinol Thermal Expansion under Fast Varying Working ConditionsPublication . Ferreira, P. Castelo; Pascoal-Faria, P.; Carreira, P.; Alves, N.We discuss the setup of a simulation on ANSYS to predict the thermal expansion of parts made of Nitinol. A simulation is justified for working conditions in which the part heating is not ho-mogeneous originating a temperature gradient across the part section such that an analytical estimate for the part expansion cannot be calculated. We apply the simulation to the topological optimization of a square section geometry and a bullet geometry for water assisted injection molding. For the topo-logical optimization we consider as parameter the wall thickness and consider both the cases of fast varying temperature and fast varying temperature and pressure.
- A finite element method to study multimaterial wind towersPublication . Pascoal-Faria, P.; Dias, C.; Oliveira, M; Alves, N.Wind towers are used to produce electrical energy from the wind. A significant number of towers is manufactured using tubular separately steel or concrete, having limitations such as maximum diameter and height imposed essentially by transportation limitations. Developed computational studies on structural design of towers have been mainly focused on a single material. This investigation aims to develop a finite element method able to study structural design of wind towers combining different materials. The finite element model combines solid and shell elements encompassing different geometries. Several case studies are considered to validate the proposed method and accurate results are obtained.
- Numerical Thermal Analysis of a T Jump System Used for Studying Polymer BehaviourPublication . Gomes, S.; Pascoal-Faria, P.; Mitchell, G. R.; Gkourmpis, T.; Youngs, T.The processing of polymers is highly complex. The study of their crystallisation assumes an important role and needs to be carefully detailed. Scattering experiments can be used to study polymer molecular organisation. However these procedures are still very multifaceted leading to the need for planning all the details in the experiments that are to be performed. This manuscript presents a finite element model developed to study the temperature variation of a T Jump System, which has been used for studying polymer behaviour with the NIMROD instrument at the ISIS Neutron and Muon Source, UK. Results show that the variation across the sample was 2ºC at a maximum temperature of 70ºC and 1ºC at a maximum temperature of 50ºC.
- Traffic Vertical Signposting: Materials Characterization and Structural Numerical SimulationPublication . Franco, M.; Fonseca, R.; Gomes, S.; Biscaia, S.; Brites, F.; Pascoal-Faria, P.; Mateus, A.The existing metallic solutions used for vertical traffic signs are associated with higher costs and environmental issues due to their manufacturing and degradation, when compared with polymeric solutions. Thus, the development of vertical signs considering the injection from polymeric materials in order to overcome problems related with sustainability, maintenance costs, and to achieve higher resistance to corrosion assumes nowadays an important role. The use of ecofriendly and innovative products considering the industrial waste combined with synthetic polymers performing the appropriate mechanical properties, can also be studied to find out new solutions that allow to solve the aforementioned problems. Additionally, these innovative vertical signs can contribute to avoid vandalism events related with theft and graffiti activities. This work presents the prior materials investigation and the structural design of vertical signs that are intended to be produced through polymer injection. Three main steps were considered: i) materials research, ii) materials characterisation through the analysis of polycarbonate resin isolated and in different sets of mixtures with different concentrations through tensile testing and static water contact angle measurements to find the optimal material composition; and iii) structural numerical simulation considering polycarbonate resin and using the current standard EN 12899-1 [1] to compute wind resistance, temporary and permanent deflections. Both experimental and numerical results led to an optimized proposal of the vertical signposting structural design.