Adventitious respiratory sounds to monitor lung function in pulmonary rehabilitation

Cristina Jácome1,2, Joana Cruz2,3, Alda Marques2,4

1 - CINTESIS: Center for Health Technologies and Information Systems Research, Faculty of Medicine, University of Porto, Portugal.
2 – Lab3R, Respiratory Research and Rehabilitation Laboratory, School of Health Sciences, University of Aveiro (ESSUA), Aveiro, Portugal.
3 – Centre for Innovative Care and Health Technology (ciTechCare), School of Health Sciences, Polytechnic Institute of Leiria, Leiria, Portugal
4 – Institute for Research in Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal

BACKGROUND

Peak expiratory flow (PEF) has been traditionally used to monitor lung function in patients with chronic obstructive pulmonary disease (COPD) before pulmonary rehabilitation (PR) sessions. However, PEF mainly reflects changes in large airways and it is known that COPD primarily targets small airways.

Adventitious respiratory sounds (ARS - crackles and/or wheezes), are related to changes within lung morphology, in all airways, and are significantly more frequent in patients with acute exacerbations of COPD. Thus, ARS may be also useful for the routine monitoring of lung function during PR programs.

AIMS

This study explored the convergent validity of ARS and PEF in patients with COPD.

METHODS

24 stable patients (3 ♀; 66±9 years; FEV1, 71±19% predicted) participated in a PR program. Assessments were conducted immediately before one PR session (Figure 1).

RESULTS

Figure 3 shows that patients with ARS had a lower PEF than patients without ARS (294±62 l/min vs. 419±128 l/min; p=0.048).

PEF was negatively correlated with presence of ARS (r=−0.41; p=0.048). Resting dyspnea was negatively correlated with PEF (r=−0.41; p=0.039), but not with ARS (r=−0.21; p=0.32).

CONCLUSION

Findings suggest that both ARS and PEF offer complementary information before a PR session, but that ARS provide additional information on patients’ respiratory status. Further research correlating ARS and PEF with patients’ performance and progression during PR is needed to strengthen the usefulness of assessing these parameters in PR.

Figure 1. Measurements taken in the study.

Table 1. Parameters assessed in the study.

<table>
<thead>
<tr>
<th>Presence of ARS</th>
<th>Resting dyspnea</th>
<th>Peak Expiratory Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(crackles and/or wheezes)</td>
<td>modified Borg scale</td>
<td>Peak flow meter</td>
</tr>
</tbody>
</table>

Digital stethoscope (ds32a, ThinkLabs, CG, USA) | Micro I, Carefusion, UK |