Ma, LeiGuan, KeYan, DongHe, DanpingLeonor, Nuno R.Ai, BoKim, Junhyeong2025-09-242025-09-242020-03Ma, L., Guan, K., Yan, D., He, D., Leonor, N. R., Ai, B., & Kim, J. (2020). Satellite-terrestrial channel characterization in high-speed railway environment at 22.6 GHz. Radio Science, 55, e2019RS006995. https://doi.org/10.1029/2019RS006995.0048-6604http://hdl.handle.net/10400.8/14110The integration of satellite and terrestrial communication systems plays a vital role in the fifth-generation mobile communication system (5G) for the ubiquitous coverage, reliable service, and flexible networking. Moreover, the millimeter wave (mmWave) communication with large bandwidth is a key enabler for 5G intelligent rail transportation. In this paper, the satellite-terrestrial channel at 22.6 GHz is characterized for a typical high-speed railway (HSR) environment. The three-dimensional model of the railway scenario is reconstructed and imported into the Cloud Ray-Tracing (CloudRT) simulation platform. Based on extensive ray-tracing simulations, the channel for the terrestrial HSR system and the satellite-terrestrial system with two weather conditions are characterized, and the interference between them are evaluated. The results of this paper can help for the design and evaluation for the satellite-terrestrial communication system enabling future intelligent rail transportation.engChannel characterizationMillimeter wave channelRailway communicationRay tracing simulationSatellite-terrestrial communicationSatellite‐Terrestrial Channel Characterization in High‐Speed Railway Environment at 22.6 GHzjournal article10.1029/2019rs0069951944-799X