Neves, Luís Miguel PiresSousa, João Miguel CharruaDias, Fábio Henrique Manso2016-05-192016-05-192014-12-11http://hdl.handle.net/10400.8/1835Durante o período de funcionamento de uma instalação eléctrica podem ocorrer várias anomalias. Enquanto muitas delas apenas são identificadas tardiamente, outras acabam por nunca serem identificadas como um potencial problema. A identificação atempada dessas anomalias permite a realização de um diagnóstico que leve à correcção das suas causas evitando assim os desperdícios e prejuízos inerentes. A identificação de um consumo anómalo pode ser realizada, de forma automática ou semi automática através de sistemas de apoio que permitam sinalizar falhas ou comportamentos anormais. O trabalho apresentado nesta dissertação pretende possibilitar esta sinalização apenas através da análise dos dados de consumo medidos em tempo real e comparados com dados históricos através de uma abordagem baseada em classificação, recorrendo a métodos de clustering. Foram testadas diferentes abordagens em três casos distintos, dois relativos a consumidores residenciais para os quais existiam registos de consumo durante um período alargado, e um relativo a uma instalação desportiva, para a qual é possível aceder em tempo real ao sistema de gestão de consumos via web. O sistema implementado proporciona vários tipos de informação ao utilizador, permitindo visualizar graficamente a existência de uma potencial anomalia quando a disparidade entre a classificação do consumo no instante e a classe do consumo de referência for significativa.porAnálise de consumos energéticosDetecção de anomaliasClusteringDiagnóstico de consumos anómalos de energia: abordagem por classificaçãomaster thesis201156482