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We study the categorical properties of preordered groups. We first give a description 
of limits and colimits in this category, and study some classical exactness properties. 
Then we point out a strong analogy between the algebraic behaviour of preordered 
groups and monoids, and we apply two different recent approaches to relative 
categorical algebra to obtain some homological properties of preordered groups.
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1. Introduction

The categorical properties of topological groups, and more generally of topological models of semi-abelian 
algebraic theories, have been studied in [3,4]. This study allowed to understand several algebraic and homo-
logical properties of these structures. Despite the similarities in the topological flavour of the categories Top
of topological spaces and Ord of preordered sets, analogous techniques are not applicable to preordered 
groups. Indeed, an important difference between topological groups and preordered ones is that the latter 
are not internal models in Ord of the theory of groups, since the inverse map is not monotone, in general. 
Because of this, several properties fail for preordered groups. For example, the category OrdGrp is not 
protomodular in the sense of [5], which means that the (split) short five lemma does not hold. In fact, 
a thorough study of the structure of split extensions in OrdGrp shows a great variety of such structures: 
in some cases, it is possible to equip the domain of a split epimorphism with uncountably many preorder 
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structures that give rise to split extensions of preordered groups, while in some others there is no compatible 
preorder.

The aim of this paper is to study the categorical properties of OrdGrp, following an approach which is 
necessarily different from the one of [3,4]. First of all, from the properties of the forgetful functors between 
OrdGrp and the categories Grp of groups and Ord, we obtain a description of limits and colimits in 
OrdGrp, and we observe that there are two stable factorization systems: (Epi, Regular Mono) and (Regular 
Epi, Mono). In particular, OrdGrp is a regular category. Actually we can say more: it is normal, in the 
sense of [15], and efficiently regular [7], although not Barr-exact [1].

Moreover, using the fact that the preorder relation is uniquely determined by the submonoid of positive 
elements (called the positive cone), we get another forgetful functor, into the category Moncan of monoids 
with cancellation, which has a left adjoint. This allows one to identify a strong similarity between the alge-
braic and homological properties of OrdGrp and the ones of the category Mon of monoids. In particular, 
two different relativizations of the classical categorical-algebraic notions give interesting information when 
applied to OrdGrp. The first one is the objectwise approach introduced in [24]: this approach aims to iden-
tify, in a category with weak algebraic properties, some “good” objects, which satisfy stronger properties. 
More precisely, one looks for canonical full subcategories that are Mal’tsev or protomodular. Such good 
objects are called Mal’tsev and protomodular objects [24]. It was shown in [24] that the Mal’tsev objects 
and the protomodular objects in Mon are precisely the groups. Using this fact, we prove here that the 
Mal’tsev objects and the protomodular objects in OrdGrp are precisely those preordered groups whose 
submonoid of positive elements is a group or, in other terms, whose preorder relation is symmetric. If we 
restrict our attention to strictly ordered groups, the “good” objects are the discrete groups.

The second approach is the study of protomodularity with respect to a pullback stable class of points 
(i.e. split epimorphisms with a fixed section), following [10]. Again, the first example of this situation was 
observed in Mon, w.r.t. the class of Schreier points [23]. Here we identify two suitable classes of points, 
one obtained by imposing that the restriction to the positive cones is a Schreier point, the other one by 
considering the internalization of the Schreier condition in the category Mon(Ord) of internal monoids in 
Ord. With respect to both classes, OrdGrp turns out to be an S-protomodular category (in the sense of 
[10]). This allows one to extend the homological results obtained in [10,11] to OrdGrp.

2. On the category OrdGrp of preordered groups

We denote by OrdGrp the category whose objects are preordered groups, namely (not necessarily 
abelian) groups G equipped with a preorder relation (i.e. a reflexive and transitive relation) ≤ such that 
the group operation is monotone:

∀ a, b, c, d ∈ G, a ≤ c, b ≤ d ⇒ a + b ≤ c + d,

and whose arrows are monotone group homomorphisms.
It is well known that the preorder relation of a preordered group is completely determined by the positive 

cone of G, which is the subset PG of positive elements of G, that are the elements a ∈ G such that a ≥ 0:

Proposition 2.1. For a group G, to give a preorder relation ≤ on G such that (G, ≤) ∈ OrdGrp is equivalent 
to giving a submonoid PG of G which is closed under conjugation in G: for all a ∈ PG and all b ∈ G, 
b + a − b ∈ PG.

Proof. Suppose that (G, ≤) ∈ OrdGrp and define PG = {a ∈ G | a ≥ 0}. It is clear that PG is a submonoid 
of G closed under conjugation.

Conversely, let P be a submonoid of a group G closed under conjugation. We define a relation ≤ on G
by putting:
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a ≤ b ⇔ b− a ∈ P.

This relation is clearly reflexive. For transitivity, suppose that a ≤ b and b ≤ c. Then b −a, c − b ∈ P . Hence 
c − a = c − b + b − a ∈ P and so a ≤ c. Moreover, the group operation is monotone. Indeed, if a ≤ c and 
b ≤ d, then c − a, d − b ∈ P . Hence c + b − (a + b) = c − a ∈ P , so that a + b ≤ c + b. Furthermore

c + d− (c + b) = c + d− b− c ∈ P,

because d − b ∈ P and P is closed under conjugation. Hence c + b ≤ c + d. This concludes the proof. �
We will denote preordered groups by X, Y , etc., using PX , PY , etc. for the corresponding positive cones. 

It is immediate to see that a morphism f : X → Y in OrdGrp restricts to a monoid homomorphism 
PX → PY . Conversely, given groups G and H with submonoids M and N closed under conjugation, a 
group homomorphism f : G → H whose restriction to M takes values in N induces a morphism in OrdGrp
between G and H with the preorders determined by M and N , respectively. Hence, the category OrdGrp
is isomorphic to the category whose objects are pairs (G, M), where G is a group and M is a submonoid of 
G closed under conjugation, and whose morphisms (G, M) → (H, N) are group homomorphisms f : G → H

such that f(M) ⊆ N .

Remark 2.2. If a group G has only elements of finite order (in particular, if G is finite), then every preorder 
≤ which makes G a preordered group is symmetric, hence an equivalence relation. Indeed, given a 
= 0, if 
a ≥ 0 then, by monotonicity of the group operation, every element of the form na, with n ∈ N, is positive. 
Since a has finite order, its inverse is one of these elements, hence −a is positive too. This means that the 
submonoid PG is a group, which is equivalent to saying that the relation ≤ is symmetric.

Proposition 2.3. Consider the forgetful functors U1 : OrdGrp → Grp and U2 : OrdGrp → Ord, with U1
forgetting the preorder and U2 the group structure. The functor U1 is topological while U2 is monadic. We 
have therefore the following commutative diagram

OrdGrp
(topological) U1 U2 (monadic)

Grp

(monadic) | |

Ord

| | (topological)
Set

Proof. To show that U1 is a topological functor, let (fi : G → Xi)i∈I be a family of group homomorphisms, 
with Xi, i ∈ I, preordered groups. Then PG = {y ∈ G | fi(y) ∈ PXi

for every i ∈ I} is a submonoid of 
G closed under conjugation, and this defines clearly the U1-initial lifting for (fi). Topologicity of U1 gives 
that, with Grp, also OrdGrp is complete and cocomplete.

To show that U2 is monadic, we will use [16, Theorem 2.4].
(a) U2 has a left adjoint L2 : Ord → OrdGrp: it sends a preorder A to the free group F(A) on the set A, 
equipped with the preorder determined by the submonoid of F(A) obtained by closing under addition and 
conjugation the set of the elements of the form b − a for all a, b ∈ A such that a ≤ b.
(b) U2 reflects isomorphisms: given a morphism f : X → Y in OrdGrp, if U2(f) is an isomorphism in Ord
then f is a bijective homomorphism and, for every x, x′ ∈ X, x ≤ x′ if and only if f(x) ≤ f(x′). Therefore 
its inverse map is a monotone homomorphism, and so f is an isomorphism in OrdGrp.
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(c) OrdGrp has and U2 preserves coequalizers of all U2-contractible coequalizer pairs. First recall that the 
functor | | : Grp → Set is monadic. Given morphisms f, g : X → Y in OrdGrp such that U2(f), U2(g) is a 
contractible pair in Ord, we know that the coequalizer q : Y → Q in OrdGrp is preserved by U1, and so it is 
also preserved by | | · U1, since | | is monadic and |U1(f)|, |U1(g)| are a contractible pair in Set. Therefore 
U2(q), as a split epimorphism that coequalizes |U1(f)|, |U1(g)| in Set, is the coequalizer of U2(f), U2(g)
in Ord. �

We collect below properties of OrdGrp that follow from this proposition.

Remark 2.4.
(1) The functor U1 : OrdGrp → Grp has both a left and a right adjoint. The left adjoint L1 : Grp →

OrdGrp equips a group G with the discrete order: a ≤ b if and only if a = b. The right adjoint 
R1 : Grp → OrdGrp equips a group G with the total relation: a ≤ b for all a, b ∈ G. It is immediate 
to see that both relations are compatible with the group operation. In the first case, PG = {0}, while 
in the second one PG = G.

(2) OrdGrp is complete and cocomplete, as stated in the proof of Proposition 2.3.
(3) Limits are preserved by both forgetful functors. Therefore the product X × Y , of two ordered groups X

and Y , is the direct product of groups equipped with the relation ≤ given by:

(x1, y1) ≤ (x2, y2) ⇔ x1 ≤ x2 and y1 ≤ y2;

that is, PX×Y = PX ×PY . Infinite products are obtained similarly. The equalizer of a pair f, g : X → Y

of parallel morphisms in OrdGrp is the equalizer in Grp equipped with the preorder induced by the 
one of X.

(4) Colimits are preserved by U1 : OrdGrp → Grp (but not by U2), so they are formed like in Grp and 
equipped with the suitable preorder, as outlined next.
Coequalizers are easily described. Given a pair of morphisms f, g : X → Y , let q : U1(Y ) → Q be the 
coequalizer in Grp of U1(f), U1(g). Putting PQ = q(PY ), it is easy to check that PQ is a submonoid of 
Q closed under conjugation, hence it makes (Q, PQ) a preordered group; and q : Y → (Q, PQ) is clearly 
a morphism in OrdGrp. The universal property is easily checked.
Coproducts are a bit more difficult. Given two preordered groups X and Y , its coproduct is the free 
product of U1(X) and U1(Y ) in Grp equipped with the positive cone obtained as the closure, under 
(internal) addition and conjugation, of the disjoint union of PX and PY ; it can also be described, 
of course, as the intersection of all the submonoids containing both PX and PY and closed under 
conjugation. Infinite coproducts are obtained similarly.

(5) In OrdGrp a morphism f : X → Y is an epimorphism if and only if it is surjective: the preservation of 
colimits by U1 and its faithfulness imply that U1 preserves and reflects epimorphisms; therefore f is an 
epimorphism in OrdGrp if and only if U1(f) is an epimorphism in Grp, that is, f is surjective. Regular 
monomorphisms in OrdGrp are the morphisms f : X → Y that are injective with PX = f−1(PY ). It is 
easily seen that (Epi, Reg Mono) is a stable factorization system in OrdGrp: every f : X → Y can be 
factored as

X
f

e

Y,

(f(X), PY ∩ f(X))

m
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and epimorphisms are pullback stable (just because surjective homomorphisms are pullback stable 
in Grp).

(6) As shown above, a morphism f : X → Y is a regular epimorphism if and only if it is surjective and 
f(PX) = PY ; and f is a monomorphism exactly when it is an injective map. It is easy to check that 
(Reg Epi, Mono) is a stable factorization system in OrdGrp. Indeed, every f : X → Y can be factored 
as

X
f

e

Y,

(f(X), f(PX))

m

and regular epimorphisms are pullback-stable: consider the following pullback

X ×Y Z
π2

π1

Z

g

X
f

Y,

where f is a regular epimorphism. If z ∈ PZ , then g(z) ∈ PY and so there exists x ∈ PX with f(x) = g(z).

Proposition 2.5. The category OrdGrp is a regular category. Moreover, it is normal.

Proof. As stated above, OrdGrp is a (finitely) complete category with a stable factorization system (Reg 
Epi, Mono), hence it is regular in the sense of Barr [1]. To show that it is normal in the sense of Z. Janelidze 
[15], we observe that it is pointed and that, for every regular epimorphism f : X → Y , U1(f) is a regular 
epimorphism in Grp, hence a normal epimorphism in Grp, and then, thanks to Remark 2.4.(4), f is a 
normal epimorphism in OrdGrp. �
Remark 2.6. The category OrdGrp is not Barr-exact [1]. Indeed, consider the following equivalence relation:

Z× Z
p1

p2

Z,〈1,1〉

where Z is equipped with the usual order and the positive cone of Z × Z is

P = {(x, x) | x ≥ 0}.

This is an equivalence relation in OrdGrp which is not effective, because the morphism 〈p1, p2〉, which is 
the identity map as sets, is not an extremal monomorphism. However, OrdGrp is efficiently regular [7], 
namely if R is an effective equivalence relation over an object X and T is another equivalence relation over 
X which is a regular subobject j : T � R of R (i.e. j is a regular monomorphism in OrdGrp), then T is 
itself effective. Indeed, T is a kernel pair of a morphism in Grp, since Grp is Barr-exact. Moreover, being 
j a regular monomorphism in OrdGrp, PT = T ∩ PR. The equivalence relation R is effective in OrdGrp, 
hence PR = R ∩ PX×X , and so

PT = T ∩R ∩ PX×X = T ∩ PX×X ,
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which proves that T is effective in OrdGrp. The importance of this property lies in the fact that, in an 
efficiently regular category, a morphism is effective for descent if and only if it is a regular epimorphism. 
This is a consequence of the following two results.

Proposition 2.7 ([7], Proposition 1.2). In an efficiently regular category, consider a discrete fibration between 
internal equivalence relations as in the following diagram:

R X

S Y.

If S is effective, then R is effective, too.

Proposition 2.8 ([14], Theorem 3.7). In a regular category, a morphism p is of effective descent if and only 
if it is a regular epimorphism and, for every discrete fibration R over the kernel pair of p, the equivalence 
relation R is effective.

Remark 2.9. From Remark 2.4 (6) it follows that a morphism f : X → Y in OrdGrp is an extremal epi-
morphism (which is the same as a strong – or a regular – epimorphism) if and only if it is an extremal 
epimorphism in Grp and its restriction to the positive cones is an extremal epimorphism in Mon. However, 
the same is not true for pairs, or families, of morphisms, where only one implication is true: if

X
f

Y Z
g

are morphisms in OrdGrp such that f and g are jointly strongly epimorphic in Grp and their restrictions 
to the positive cones are jointly strongly epimorphic in Mon, then f and g are jointly strongly epimorphic 
in OrdGrp. Indeed, suppose that f and g factor through a monomorphism m:

X
f

Y Z.
g

W

m

Since f and g are jointly strongly epimorphic in Grp, we can assume that W = Y and that m = idY . If 
PW 
= PY , then the restrictions of f and g to the positive cones would factor through a proper inclusion 
PW → PY , and so they would not be jointly strongly epimorphic in Mon.

The converse implication is false, as the following example shows.

Example 2.10. Let Z be the group of integers with the usual order, namely PZ = N. Consider the two 
coproduct inclusions in OrdGrp

Z
ι1

Z + Z Z.
ι2

ι1 and ι2 are clearly jointly strongly epimorphic in OrdGrp, but their restrictions to the positive cones are 
not jointly strongly epimorphic in Mon, since the supremum of ι1(N) and ι2(N) is N + N, which is not the 
positive cone of Z + Z, because N + N is not closed under conjugation in Z + Z.
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Since closure under conjugation holds trivially in the abelian case, it is easily checked that the result 

is true for abelian groups: when Y is an abelian group, a pair X
f

Y Z
g

is jointly strongly 
epimorphic in OrdGrp if and only if both its underlying group homomorphisms in Grp and its restriction 
to the positive cones in Mon are so.

3. A special adjunction

The functor P : OrdGrp → Mon, which sends a preordered group to its positive cone, factors through 
the category Moncan of monoids with cancellation: indeed, every submonoid of a group satisfies both left 
and right cancellation properties. The functor P : OrdGrp → Moncan has a left adjoint:

Moncan

oGp

⊥ OrdGrp.
P

(A)

It is obtained in the following way: given a monoid M with cancellation, we consider its group completion 
Gp(M), i.e. the quotient of the free group F(M) on the underlying set of M w.r.t. the normal subgroup 
generated by the elements of the form [a] + [b] − [a + b] (see [17–19]). Then we equip the group Gp(M)
with the order induced by the positive cone PGp(M) which is the smallest submonoid of Gp(M) contain-
ing ζM (M) and closed under conjugation, where ζM : M → Gp(M) is the unit of the group completion 
adjunction. This clearly gives rise to a preordered group, and this construction is functorial. Let us check 
that we actually get an adjunction. Given a monoid M with cancellation and a preordered group X, a 
morphism f : oGp(M) → X restricts to a monoid homomorphism PGp(M) → PX ; composing it with the ho-
momorphism M → ζM (M) ↪→ PGp(M), we obtain the desired homomorphism M → PX . Conversely, given 
a monoid homomorphism h : M → PX , we compose it with the inclusion of PX into X, thus obtaining a 
homomorphism from M to the group X. By the universal property of the group completion, this determines 
a unique group homomorphism f : Gp(M) → X which extends h. Such f is monotone: indeed, ζM (M) is 
contained in f−1(PX), and f−1(PX) is closed under conjugation in Gp(M). Hence PGp(M) is contained in 
f−1(PX), and thus f(PGp(M)) ⊆ PX . So f : oGp(M) → X is a morphism in OrdGrp. It is straightforward 
to check that these correspondences are natural and inverse to each other.

The previous adjunction restricts to an adjunction between the category OrdAb of preordered abelian 
groups and the category CMoncan of commutative monoids with cancellation:

CMoncan

oGp

⊥ OrdAb.
P

In this case, the left adjoint oGp is much simpler: indeed, the group completion Gp(M) of a commutative 
monoid M with cancellation is the quotient of the direct product M×M w.r.t. the congruence ∼ defined by 
(a, b) ∼ (c, d) if and only if a + d = b + c. Moreover, M is a submonoid of Gp(M) (since M is a monoid with 
cancellation) and, being Gp(M) abelian, M is closed under conjugation in it, hence it is the positive cone of 
a compatible preorder on Gp(M). Thus, the composite functor P · oGp is isomorphic to the identity functor 
on CMoncan. In other terms, the unit η of this adjunction is an isomorphism. Observe that the functor P
is not faithful: given any two abelian groups X and Y , equipped with the trivial order (i.e. PX = PY = 0), 
then any group homomorphism from X to Y is monotone and it is sent by P to the trivial map 0 → 0.

For the larger adjunction (A), it is not true that the unit is an isomorphism. In fact, the situation is 
much more complicated. Clearly, being embeddable in a group is a necessary condition on a monoid M to 
have an isomorphism as the unit of the adjunction (A), and being cancellative is not enough for a monoid 
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to be embeddable in a group. Mal’tsev gave in [18,19] a characterization of embeddable monoids (see also 
Chapter VII of [12] for a description of such monoids). Here we are only interested in the study of those 
embeddable monoids.

Proposition 3.1. If a monoid M is the positive cone of a preordered group, then M = PoGp(M).

Proof. We start by observing that, if a monoid is embeddable in a group, then it is embeddable in its group 
completion. Consider then the following commutative diagram of monoid homomorphisms:

M
ηM

f

Gp(M)

h

H,

where H is a group and f is injective. Then h is injective, too. Indeed, since h is injective when restricted to 
M and a generic element of Gp(M) is an equivalence class of chains of the form m1 −m2 +m3 + . . .−mk, 
injectivity of h follows by induction on the length of the chain.

Now, if M = PH for a preordered group H, then the injective morphism h : oGp(M) → H restricts to an 
injection PoGp(M) → M = PH . Since M ⊆ PoGp(M), the proof is complete. �
Proposition 3.2. Given a monoid M which is embeddable in a group, the component ηM : M → PoGp(M) of 
the unit of the adjunction (A) is an isomorphism if and only if the following condition is satisfied:

∀ a, b ∈ M ∃ x, y ∈ M such that a + b = b + x = y + a. (B)

Proof. If M is the positive cone of oGp(M), then it is a submonoid closed under conjugation in Gp(M). 
Hence, for all a, b ∈ M the elements

y = a + b− a and x = −b + a + b

belong to M , and this gives Condition (B). Conversely, to prove that M is closed under conjugation in 
Gp(M), it suffices to conjugate an element a ∈ M with elements of the form b or −b, with b ∈ M , because 
all elements in Gp(M) are chains of such. Now, supposing that Condition (B) holds, we have:

a + b = b + x ⇒ −b + a + b = x ∈ M ; a + b = y + a ⇒ a + b− a = y ∈ M,

and this concludes the proof. �
The previous proposition actually gives a characterization of the monoids that are positive cones of a 

preordered group. Indeed, we have the following

Corollary 3.3. A monoid M which is embeddable in a group is the positive cone of a preordered group if and 
only if Condition (B) holds.

4. Algebraic properties of OrdGrp

Since a morphism in OrdGrp is an epimorphism if and only if it is surjective, hence if and only if it is 
an epimorphism in Grp, we have that OrdGrp is a weakly Mal’tsev category [20], which means that for 
every pullback of split epimorphisms as in the following diagram
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A×Y C

πA

πC

C

g

〈sg,1C〉

A

〈1A,tf〉

f
Y,

s

t

the morphisms 〈1A, tf〉 and 〈sg, 1C〉 are jointly epimorphic. In fact, this is a particular instance of a more 
general context which is considered in [21,22].

Actually, we have more: OrdGrp is weakly protomodular, which means that, for every split epimorphism 

A
f

B
s

with kernel k : X → A, k and s are jointly epimorphic. The proof that a weakly protomodular 

category is weakly Mal’tsev is essentially the same as the proof that a protomodular category is Mal’tsev 
(see, for example, [2]). Moreover, this explains why OrdGrp is a normal category: indeed, as shown in [8], 
a weakly protomodular category is normal. We observe that the notion of weakly protomodular category 
we are considering is completely different from the notion of weak protomodular category introduced in [13]: 
therein the word “weak” concerns the weakness of the pullbacks considered.

Furthermore

Proposition 4.1. OrdGrp is a unital category [6], i.e. for any two objects X and Y the canonical morphisms 
〈1, 0〉 : X → X × Y and 〈0, 1〉 : Y → X × Y are jointly strongly epimorphic.

Proof. Given X, Y, Z ∈ OrdGrp, consider the following commutative diagram

X
〈1,0〉

f

X × Y Y,
〈0,1〉

g

Z

m

where m is a monomorphism. Since Grp is a unital category, m is an isomorphism of groups; it only remains 
to show that its inverse t is monotone. Suppose that (x, y) ≤ (x′, y′); then x ≤ x′ and y ≤ y′, which implies 
that f(x) ≤ f(x′) and g(y) ≤ g(y′). But then

t(x, y) = f(x) + g(y) ≤ f(x′) + g(y′) = t(x′, y′). �
Proposition 4.2. OrdAb has biproducts.

Proof. We want to show that, for any X, Y ∈ OrdAb,

X
〈1,0〉

X × Y Y
〈0,1〉

is a coproduct diagram. Given morphisms f : X → Z and g : Y → Z, the (necessarily unique, by unitality) 
morphism α making the following diagram commute

X
〈1,0〉

f

X × Y

α

Y
〈0,1〉

g

Z

is just the composite X × Y
f×g

Z × Z
mZ

Z , where mZ is the group operation of Z. �



M.M. Clementino et al. / Journal of Pure and Applied Algebra 223 (2019) 4226–4245 4235
The categories OrdGrp and OrdAb are not protomodular [5]. Indeed, if Z is the group of integers with 
the usual order, we can equip the direct product Z ×Z with (at least) two preorders: the product one, given 
by

(x, y) ≤ (x′, y′) ⇔ x ≤ x′ and y ≤ y′,

and the (reverse) lexicographical one, given by

(x, y) ≤ (x′, y′) ⇔ y < y′ or y = y′, x ≤ x′.

Denoting by Z ×p Z and Z ×l Z the two corresponding preordered groups, we obtain a morphism of split 
extensions in OrdGrp:

Z
〈1,0〉

Z×p Z

1Z×Z

π2
Z

〈0,1〉

Z
〈1,0〉

Z×l Z
π2

Z
〈0,1〉

whose middle component is not an isomorphism, because its inverse is not monotone. So the Split Short 
Five Lemma does not hold in OrdGrp, nor in OrdAb.

In order to describe local categorical-algebraic properties of “good” objects in categories that are not 
protomodular or Mal’tsev, in [24] some notions have been considered for objects. In order to recall them, 
we first need the following

Definition 4.3. A point (i.e. a split epimorphism with a fixed section) A
f

B
s

with kernel k : X → A in 

a pointed finitely complete category is strong if k and s are jointly strongly epimorphic. It is stably strong
if every pullback of it along any morphism g : C → B is strong.

Definition 4.4 ([24]). An object Y of a finitely complete category C is

(1) a strongly unital object if the point Y × Y
π2

Y
〈1,1〉

is stably strong;

(2) a Mal’tsev object if, for every pullback of split epimorphisms over Y as in the following diagram

A×Y C

πA

πC

C

g

〈sg,1C〉

A

〈1A,tf〉

f
Y,

s

t

the morphisms 〈1A, tf〉 and 〈sg, 1C〉 are jointly strongly epimorphic;
(3) a protomodular object if every point over Y is stably strong.

We observe that, in a unital category, an object is strongly unital if, and only if, it is gregarious in the 
sense of [2], Definition 1.9.1. Proposition 1.9.2 in [2] gives a characterization of gregarious (= strongly unital) 
objects in Mon: a monoid M is gregarious if and only if for any m in M there exist u, v ∈ M such that 
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u +m +v = 0. Every group is a gregarious monoid, of course, but there are gregarious monoids that are not 
groups, as Counterexample 1.9.3 in [2] shows. However, a crucial fact for our study of “group-like” objects 
in OrdGrp is the following

Lemma 4.5. If a monoid M is the positive cone of a preordered group, then it is gregarious if, and only if, 
it is a group.

Proof. Suppose that, for any m in M , there exist u, v ∈ M such that u +m +v = 0. Thanks to Corollary 3.3, 
we know that there exists y ∈ M such that m + v = y + m. Then u + y + m = 0 and u + y is a left inverse 
for m. Every element having a left inverse, M is a group. �

Now we can state and prove the main result of this section:

Theorem 4.6. For a preordered group Y , the following conditions are equivalent:

(i) Y is protomodular;
(ii) Y is a Mal’tsev object;
(iii) Y is strongly unital;
(iv) PY is a group;
(v) the preorder relation on Y is an equivalence relation.

Proof. The equivalence between (iv) and (v) was already observed (see Remark 2.2).
(iv) ⇒ (i): given a diagram in OrdGrp as

K
k

B ×Y X

f ′

h′

X

f

0 B

〈1B ,sh〉

h
Y,

s

(C)

being Grp a protomodular category, we already know that k and 〈1B , sh〉 are jointly strongly epimorphic 
in Grp. So, thanks to Remark 2.9, it suffices to show that their restrictions to the positive cones are jointly 
strongly epimorphic in Mon. Consider then the following diagram:

PK
k

PB×Y X

f ′

h′

PX

f

0 PB

〈1B ,sh〉

h
PY

s

(using the same notations for the restrictions to the positive cones). The functor P preserves limits, hence 
the two downward squares are still pullbacks. Since PY is a group, it is a protomodular object in Mon ([24], 
Theorem 7.7), as desired. Then the thesis follows.

(i) ⇒ (ii) follows from Proposition 7.2 in [24].
(ii) ⇒ (iii) follows from Proposition 6.3 in [24], being OrdGrp a regular category.
(iii) ⇒ (iv): thanks to Lemma 4.5, it suffices to prove that PY is a gregarious monoid. Suppose that there 

is an element b ∈ PY for which there are no u, v ∈ M with u + b + v = 0. Let X = 〈b〉 be the subgroup of 
Y generated by b, with the induced preorder, and j : X ↪→ Y the inclusion. Observe that, for n ∈ N, nb = 0
if and only if n = 0 (otherwise there would exist u, v ∈ M with u + b + v = 0). Hence X, as a preordered 
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group, is isomorphic to Z with its usual order, namely PX = {nb | n ∈ N}. Consider then the following 
right-hand side pullback in OrdGrp:

Y
〈1,0〉

Y ×X

1×j

π2
X

〈j,1〉

j

Y
〈1,0〉

Y × Y
π2

Y.
〈1,1〉

We are going to prove that the positive cone of Y ×X is not the positive cone P generated by

C = {(c, 0) | c ∈ PY } ∪ {(nb, nb) | n ∈ N}.

To do that, we show that (0, b) /∈ P . The positive cone P is obtained by iteration of two steps, using addition 
and conjugation. Formally, let C(0) = A(0) = C, and define, for k ∈ N,

A(k + 1) = {s + t | s, t ∈ C(k)},
C(k + 1) = {w + s− w | s ∈ A(k + 1), w ∈ Y ×X}.

Then P =
⋃

k∈N

A(k) =
⋃

k∈N

C(k). Now we show, by induction, that if (c, b) ∈ P , then

c = y + u + b + v − y, for some y ∈ Y, u, v ∈ PY .

This is true for (c, b) ∈ C(0). If it is true for (c, b) ∈ C(k), then:

– if (a, b) ∈ A(k + 1), i.e.

(a, b) = (c1, b1) + (c2, b2)

for some (c1, b1), (c2, b2) ∈ C(k), then either b1 = b or b2 = b. Suppose b1 = b. Then

a = y + a1 + b + a2 − y + c2 = y + a1 + b + a2 + (−y + c2 + y) − y,

with −y + c2 + y ∈ PY . Hence (a, b) satisfies our claim. The case b2 = b is analogous.
– if (a, b) ∈ C(k + 1), i.e. a = z + c − z with (c, b) ∈ A(k + 1), then

a = z + y + a1 + b + a2 − y − z,

and our claim is proved. Now, if the point Y ×X
π2

X
〈j,1〉

is strong, then there is some k ∈ N such 

that (0, b) ∈ A(k), and then, since

0 = y + a1 + b + a2 − y,

with y ∈ Y, a1, a2 ∈ PY , we would get a1 + b + a2 = 0, which is a contradiction. �
The previous theorem shows, in particular, that OrdGrp is not a Mal’tsev category nor a strongly unital 

one, since a finitely complete category is Mal’tsev (resp. strongly unital) if and only if every object is 
Mal’tsev (resp. strongly unital); see [24].
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We conclude this section by observing that, since the full subcategory of protomodular objects in 
OrdGrp, i.e. the full subcategory whose objects are the preordered groups whose positive cone is a group, 
is closed under finite limits in OrdGrp, it is a protomodular category, thanks to Corollary 7.4 in [24]. It 
is actually the category of the preordered groups such that the inverse map is monotone, hence it is the 
category Grp(Ord) of internal groups in Ord.

5. A study of split extensions in OrdGrp

In order to better understand the protomodular aspects of OrdGrp, we will analyse the structure of 
split extensions in this category.

Let X
k

A
p

B
s

be a split extension in OrdGrp. Being also a split extension in Grp, we 

have that A, as a group, is isomorphic to the semidirect product X �ϕ B w.r.t. the action ϕ of B on X
given by ϕb(x) = k−1(s(b) + k(x) − s(b)); more precisely, in Grp the given split extension is isomorphic to 

the split extension X
〈1,0〉

X �ϕ B
πB

B.
〈0,1〉

In addition, if we consider the corresponding group action 

ϕ : B → Aut(X) described above, we obtain that

ϕb : X → X is monotone for every b ∈ B,

because the positive cone of A is closed under conjugation.
Throughout this section, for a given split extension

X
〈1,0〉

X �ϕ B
πB

B
〈0,1〉

(D)

in Grp, with X and B preordered groups and ϕb : X → X monotone for every b ∈ B, we will study the 
compatible preorders on X �ϕ B, in the sense that they make X �ϕ B a preordered group and (D) a split 
extension in OrdGrp.

There are two possible “canonical” preorders on X �ϕ B, namely:

• the product preorder, whose positive cone is Pprod = PX × PB ,
• and the (reverse) lexicographical preorder, which is defined by:

(x, b) ≤ (x′, b′) ⇔ b < b′ or (b = b′ and x ≤ x′).

In other terms, the positive cone of the lexicographical preorder is

Plex = {(x, b) ∈ X �ϕ B | b > 0 or (b = 0 and x ≥ 0)};

indeed (x, b) ≤ (x′, b′) with respect to the preorder induced by the positive cone Plex if, and only if,

(x′, b′) − (x, b) = (x′, b′) + (−ϕ−b(x),−b) = (x′ − ϕb′−b(x), b′ − b) ∈ Plex,

which means either b < b′ or b = b′ and x′ − x ≥ 0, i.e. x ≤ x′.

As a first example consider the ordered group Z and the split extension Z
〈1,0〉

Z× Z
π2

Z.
〈0,1〉

As we 

mentioned before, both the product the lexicographic preorders are compatible. We will see in Example 5.8
that these are not the only compatible preorders.
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However, in general the two preorders mentioned above are not always compatible. Before giving some 
necessary and sufficient conditions for their compatibility, we observe they are the lower and the upper 
bound, respectively, for every compatible preorder on X �ϕ B:

Proposition 5.1. If P is the positive cone of a compatible preorder on X �ϕ B, then:

Pprod ⊆ P ⊆ Plex.

Proof. If x ≤ x′ and b ≤ b′, then (x, 0) ≤ (x′, 0) and (0, b) ≤ (0, b′), because 〈1, 0〉 and 〈0, 1〉 are monotone 
maps. Thus

(x, b) = (x, 0) + (0, b) ≤ (x′, 0) + (0, b′) = (x′, b′).

This proves that PX × PB ⊆ P . Moreover, if (x, b) ≤ (x′, b) in X �ϕ B, then (x, b) − (0, b) ≤ (x′, b) − (0, b), 
hence (x, 0) ≤ (x′, 0). Since 〈1, 0〉 : X → X �ϕ B is a kernel in OrdGrp, it follows that x ≤ x′. This shows 
that P ⊆ Plex. �

Now we give necessary and sufficient conditions for the product and the lexicographical preorders to be 
compatible. We start with the product preorder.

Proposition 5.2. The product preorder is compatible if and only if:

∀ b ∈ PB , ∀x ∈ X ϕb(x) ≥ x. (E)

Proof. PX × PB is a positive cone if and only if, for every (x1, b1), (x2, b2) ∈ PX × PB and every (x, b) ∈
X �ϕ B, the elements

(x2, b2) + (x1, b1) and (x, b) + (x1, b1) − (x, b)

belong to PX × PB . Since

(x2, b2) + (x1, b1) = (x2 + ϕb2(x1), b2 + b1) ∈ PX × PB ,

due to monotonicity of ϕb2 , and

(x, b) + (x1, b1) − (x, b) = (x + ϕb(x1) + ϕb+b1−b(−x), b + b1 − b),

we have that PX × PB is a positive cone if and only if:

∀x ∈ X, ∀x1 ∈ PX , ∀b ∈ B, ∀b1 ∈ PB , x + ϕb(x1) + ϕb+b1−b(−x) ∈ PX . (F)

Since b + b1 − b ∈ PB (being PB closed under conjugation) and ϕb(x1) ∈ PX (because ϕb is monotone), it is 
immediate to see that, under (E), Condition (F) is satisfied. Conversely, assuming (F) and choosing b = 0
and x1 = 0 there, we get that x + ϕb1(−x) ∈ PX , i.e. ϕb1(−x) ≥ −x for all x ∈ X and b1 ∈ PB , which is 
clearly equivalent to (E). �
Remark 5.3. It is immediate to see that the product preorder on a semidirect product X�ϕB is compatible 
if and only if the product projection πX : X �ϕ B → X is a monotone map. We recall that πX is a group 
homomorphism if and only if the action ϕ is trivial, i.e. the semidirect product is actually a direct product. 
In this case, the product preorder is clearly compatible.
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Concerning the lexicographical preorder, we have the following:

Proposition 5.4.
(1) If the preorder on B is antisymmetric, then the lexicographical preorder on X �ϕ B is compatible.
(2) If X has a non-positive element, then the lexicographical preorder on X�ϕ B is compatible if, and only 

if, the preorder on B is antisymmetric.

Proof. We first show that the preorder on B is antisymmetric if, and only if, given b, b′ ∈ PB , b > 0 implies 
b + b′ > 0. Indeed, supposing that PB has no non-trivial invertible elements, if b + b′ = 0, then b′ = −b, and 
since b′ ∈ PB , this would give b′ = 0, and so b = 0. Conversely, if the preorder on B is not antisymmetric, 
then there exists b ∈ PB , b 
= 0, such that −b ∈ PB . Choosing b′ = −b we get that b > 0 but b + b′ = 0.

Now suppose that the preorder on B is antisymmetric. We recall that the positive cone of the lexico-
graphical preorder is:

Plex = {(x, b) ∈ X �ϕ B | b > 0 or (b = 0 and x ≥ 0)}.

Clearly (0, 0) ∈ Plex. If (x, b), (x′, b′) ∈ Plex, then

(x, b) + (x′, b′) = (x + ϕb(x′), b + b′) ∈ Plex,

since in the case b > 0 or b′ > 0 we have that b + b′ > 0, while in the case b = b′ = 0 we have x + ϕb(x′) =
x + x′ ≥ 0. Finally, if (x, b) ∈ X �ϕ B and (x′, b′) ∈ Plex, then

(x, b) + (x′, b′) − (x, b) = (x + ϕb(x′) − (ϕb+b′−b(x)), b + b′ − b) ∈ Plex,

because b′ > 0 implies b + b′ − b > 0, while from b′ = 0 we get that (x + ϕb(x′) − x, 0) ∈ Plex, since 
0 = ϕb(0) ≤ ϕb(x′) by monotonicity of ϕb, and PX is closed under conjugation in X.

Finally, suppose that there exists x ∈ X \PX . If the preorder on B is not antisymmetric, there is b ∈ PB , 
b 
= 0, such that −b ∈ PB . Then (x, b) and (0, −b) both belong to Plex, but (x, b) + (0, −b) = (x, 0) does 
not. �

In general, there is no compatible preorder on X �ϕ B. In order to give a concrete counterexample, we 
first observe that, when PB is a group, there is at most one compatible preorder:

Proposition 5.5. If PB is a group then there is at most one preorder structure on X�ϕB making (D) a split 
extension in OrdGrp.

Proof. Saying that PB is a group is the same as saying that B is a protomodular object in OrdGrp. 
So, supposing that there are two compatible preorder structures on X �ϕ B, whose positive cones are P
and P ′, we get that the intersection P ∩ P ′ is a positive cone of a compatible preorder structure, and 
it is contained in both. Hence we get two monomorphisms i : (X �ϕ B, P ∩ P ′) → (X �ϕ B, P ) and 
i′ : (X �ϕ B, P ∩ P ′) → (X �ϕ B, P ′) through which 〈1, 0〉 and 〈0, 1〉 factor:

X
〈1,0〉

(X �ϕ B,P ∩ P ′)

i

πB

B
〈0,1〉

X
〈1,0〉

(X �ϕ B,P )
πB

B,
〈0,1〉

X
〈1,0〉

(X �ϕ B,P ∩ P ′)

i′

πB

B
〈0,1〉

X
〈1,0〉

(X �ϕ B,P ′)
πB

B.
〈0,1〉
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But, since B is a protomodular object, 〈1, 0〉 and 〈0, 1〉 are jointly strongly epimorphic, and so i and i′ are 
isomorphisms in OrdGrp. This means that P ∩ P ′ = P = P ′. �

We can actually say more: the unique possible preorder structure is the product one:

Proposition 5.6. If PB is a group the unique possibly compatible preorder structure on X�ϕB is the product 
preorder.

Proof. If P is a positive cone for X �ϕ B and (x, b) ∈ P , then b = πB(x, b) ∈ PB . But PB is a group, hence 
−b ∈ PB , which implies that (0, −b) ∈ P . Hence

(x, 0) = (x, b) + (0,−b) ∈ P.

Since 〈1, 0〉 is the kernel of πB, this implies that x ∈ PX , i.e. (x, b) ∈ PX × PB . So, P is contained in the 
positive cone of the product preorder. But we proved that the product preorder is the smallest possible one, 
so P = PX × PB . �

Hence, if we consider a protomodular object B and a group action of B on X which does not satisfy the 
(necessary and sufficient) condition for the product preorder to be compatible, then there is no compatible 
preorder structure on the semidirect product X �ϕ B. The following is a concrete example:

Example 5.7. Consider the split extension X
〈1,0〉

X �ϕ B
πB

B,
〈0,1〉

where X = Z with the identity 

preorder (i.e. PX = {0}), B = Z with the total preorder (i.e. PB = Z), and the action ϕ is given by 
ϕb(x) = (−1)bx. Then the product preorder is not compatible, because ϕ1(x) = −x � x if x 
= 0.

Looking at the opposite situation, namely when the relation on B is antisymmetric, we can get many 
compatible structures on the semidirect product, as the following example shows.

Example 5.8. Consider the split extension Z
〈1,0〉

Z× Z
π2

Z,
〈0,1〉

where on both copies of Z there is the 

usual order (namely PZ = N). Then there is a bijection between the set of positive cones of the compatible 
preorders on Z × Z and the set of sequences (xn)n∈N in N ∪ {∞} such that x0 = 0 and, for all n, m ∈ N, 
xn+m ≥ xn + xm.

Indeed, for every positive cone P , we can define the sequence (xn), where

x0 = 0, xn = sup {k ∈ N | (−k, n) ∈ P} for n > 0.

If (−k, n) and (−k′, m) belong to P , then (−(k+k′), n +m) ∈ P , from which we get that xn+m ≥ xn +xm. 
Conversely, given a sequence (xn) with x0 = 0 and, for all n, m ∈ N, xn+m ≥ xn + xm, we define

P = {(−k, n) | n ∈ N, k ∈ Z, k ≤ xn}.

It is clear that Pprod ⊆ P ⊆ Plex; let us check that P is a submonoid of Z ×Z (closedness under conjugation 
comes for free, since all groups involved here are abelian):

(−k, n), (−k′,m) ∈ P ⇒ k ≤ xn, k
′ ≤ xm ⇒ −(k + k′) ≤ xn + xm ≤ xn+m ⇒ (−(k + k′), n + m) ∈ P.
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Thanks to this bijection, we can see that the set of compatible preorders is uncountable. In fact, the set of 
sequences (xn) as above such that the value ∞ is never reached is uncountable. To see this, suppose that 
this set is countable. So we get a sequence of sequences:

(x1
n), . . . , (xk

n), . . .

Consider the sequence (yn) defined by:

y0 = 0;

y1 = x1
1 + 1;

y2 = max {x2
2 + 1, y1 + y1};

y3 = max {x3
3 + 1, yi + yj : i + j = 3};

yn = max {xn
n + 1, yi + yj : i + j = n}.

It is immediate to see that (yn) satisfies the conditions to define a positive cone, that it never reaches the 
value ∞, and that it is different from all sequences (xk

n), because, for all n ∈ N, yn 
= xn
n. This contradicts 

the hypothesis that the set is countable.

6. Relative protomodularity

In Section 4 we used the objectwise approach of [24] to describe what remains of protomodularity in 
the category OrdGrp. In [9,10] a different approach was considered with a similar scope: describing par-
tial homological properties of “weak” algebraic categories, having as guiding example the category Mon of 
monoids. This alternative approach does not try to identify “good” objects, but rather a “good” class of 
points, relatively to which the category has strong homological properties, similar to the ones of protomod-
ular categories. The aim of this section is to study the category OrdGrp from this alternative point of view. 
We will see that there are at least two good classes of points we can consider. For both, we will identify a 
protomodular subcategory of OrdGrp, called the protomodular core relatively to the chosen class of points. 
Not so surprisingly, in both cases the protomodular core will be the full subcategory of OrdGrp whose 
objects are the preordered groups whose positive cone is a group. This gives a strong parallelism (which 
does not hold, in general) between the objectwise approach of Section 4 and the one relative to classes of 
points.

We start by recalling from [10] the following

Definition 6.1. Let C be a pointed finitely complete category, and S a class of points in C which is stable 
under pullbacks and closed in Pt(C) under finite limits. C is S-protomodular if every point in S is a strong 
point.

A typical example of an S-protomodular category is the category Mon of monoids w.r.t. the class S of 
Schreier points [25,23]: a point

X
k

A
p

B
s

(G)

in Mon is a Schreier point if, for every a ∈ A, there exists a unique x ∈ X such that a = k(x) + sf(a). 
This happens if and only if there exists a unique map q : A → X (which is not a monoid homomorphism, 
in general) such that a = kq(a) + sf(a) for all a ∈ A. As explained in [23], Schreier points correspond 
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to classical monoid actions, where an action of a monoid B on a monoid X is a monoid homomorphism 
B → End(X), where End(X) is the monoid of endomorphisms of X.

We observe that, given a split extension X
〈1,0〉

X �ϕ B
πB

B
〈0,1〉

in Grp, where X and B are 

preordered groups and the action ϕ satisfies Condition (E), the action ϕ restricts to a monoid homo-
morphism ϕ|PB

: PB → End(PX), i.e. to a monoid action of PB on PX . This means that, when the 
semidirect product X �ϕ B is equipped with the product preorder, the restriction of the split extension 

X
〈1,0〉

X �ϕ B
πB

B
〈0,1〉

to the positive cones is a Schreier split extension of monoids. The converse is 

also true: if the split extension X
〈1,0〉

X �ϕ B
πB

B,
〈0,1〉

restricted to the positive cones, is a Schreier 

split extension of monoids, then, as a set, the positive cone PX�ϕB is the cartesian product PX ×PB , which 
says that the preorder on X �ϕ B is the product preorder. This fact allows us to show that OrdGrp is an 
S-protomodular category w.r.t. a suitable class S of points.

Proposition 6.2. Let S be the class of points X
k

A
p

B
s

in OrdGrp whose restriction to the 

positive cones is a Schreier point in Mon. Then OrdGrp is S-protomodular.

Proof. We already observed that, if two morphisms in OrdGrp are jointly strongly epimorphic in Grp
and their restrictions to the positive cones are jointly strongly epimorphic in Mon, then they are jointly 
strongly epimorphic in OrdGrp. Grp is a protomodular category, so every point in it is strong. Then the 
thesis follows, observing that both the forgetful functor OrdGrp → Grp and the positive cone functor 
P : OrdGrp → Mon preserve limits. �

We observe that the class S we are considering in OrdGrp is the class of points (G) such that the 
map q : A → X defined by q(a) = k−1(a − sf(a)) is monotone. Indeed, this map q corresponds, up to 
isomorphism, to the product projection πX : X �ϕ B → X, which is monotone if and only if the preorder 
on X �ϕ B is the product preorder, as we observed in Remark 5.3.

In an S-protomodular category C, it is possible to identify a protomodular subcategory, called the 
protomodular core relative to the class S. Its objects are the so-called S-special objects:

Definition 6.3. Let C be an S-protomodular category. An object X is said to be S-special when the point

X
〈1,0〉

X ×X
π2

X
〈1,1〉

belongs to the class S.

Since OrdGrp is an S-protomodular category for the class S considered above, we can wonder what is 
the protomodular core of OrdGrp w.r.t. the class S. If the point

X
〈1,0〉

X ×X
π2

X
〈1,1〉

is in S, the map q : X ×X → X is given by q(x, y) = x − y. It is easy to see that q is monotone if and only 
if the inversion map i : X → X sending x to −x is monotone. This happens if and only if PX is a group. 
Hence:
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Proposition 6.4. The protomodular core S-OrdGrp is the full subcategory of OrdGrp whose objects are 
the preordered groups X for which PX is a group, i.e. those for which the preorder relation is symmetric.

Now we study another approach to S-protomodularity, which gives the same protomodular core as the 
previous one.

Let Mon(C) be the category of internal monoids in a finitely complete category C. The notion of a 
Schreier point only involves finite limits, so it is possible to express it internally in C. Moreover, the notion 
of S-protomodularity only involves finite limits and monomorphisms (indeed, two morphisms are jointly 
strongly epimorphic if, whenever they factor through a monomorphism m, m is an isomorphism), hence it 
is Yoneda invariant (see Example 2.5 in [11]). This means the following:

Proposition 6.5. Mon(C) is an S-protomodular category w.r.t. the class S of internal Schreier points.

When C = Set, the protomodular core is the category Grp of groups. Indeed, if X is a group, the map 
q : X × X → X defined by q(x, y) = x − y satisfies the Schreier condition. Conversely, suppose that the 
point

X
〈1,0〉

X ×X
π2

X
〈1,1〉

is a Schreier one. Then for all (x, y) ∈ X ×X there exists a unique element q(x, y) ∈ X such that

(x, y) = (q(x, y), 0) + (y, y).

From this equality we get that x = q(x, y) + y. In particular, choosing x = 0 we prove that every y ∈ X is 
left invertible, hence X is a group.

Now, the argument above can be internalized, giving that the protomodular core of Mon(C) w.r.t. the 
class of internal Schreier points is the full subcategory Grp(C) of internal groups in C. When C = Top, we 
conclude that the protomodular core of the category of topological monoids w.r.t. the class of topological 
Schreier points is just the category of topological groups. When C = Ord, the category Mon(Ord) is just 
the category of preordered monoids, i.e. those monoids equipped with a preorder relation such that the 
monoid operation is monotone. The protomodular core of Mon(Ord) w.r.t. the class of preordered Schreier 
points is the subcategory of internal groups in Ord, which are precisely those preordered groups for which 
the preorder relation is symmetric, i.e. the positive cone is a group.

We conclude by observing that OrdGrp is a subcategory of Mon(Ord). Moreover, every point in 
OrdGrp, whose restriction to the positive cones is a Schreier point in Mon, is actually an internal Schreier 
point in Mon(Ord). This means that the class of points we considered in the second approach contains the 
class of the first one.
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