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Abstract

This paper deals with the investigation of the solution of the time-fractional telegraph equation in higher

dimensions with ψ-Hilfer fractional derivatives. By application of the Fourier and ψ-Laplace transforms

the solution is derived in closed form in terms of bivariate Mittag-Leffler functions in the Fourier domain

and in terms of convolution integrals involving Fox H-functions of two-variables in the space-time domain.

A double series representation of the first fundamental solution is deduced for the case of odd dimension.

The results derived here are of general nature since our fractional derivatives allow to interpolate between

Riemann-Liouville and Caputo fractional derivatives and the use of an arbitrary positive monotone increasing

function ψ in the kernel allows to encompass most of the fractional derivatives in the literature. In the one

dimensional case, we prove the conditions under which the first fundamental solution of our equation can be

interpreted as a spatial probability density function evolving in time, generalizing the results of Orsingher

and Beghin (2004). Some plots of the fundamental solutions for different fractional derivatives are presented

and analysed, and particular cases are addressed to show the consistency of our results.

Keywords: Time-fractional telegraph equation; ψ-Hilfer fractional derivative; ψ-Laplace transform;

Series and integral representations; Fractional moments; Probability density function.
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1 Introduction

Nowadays, there are several definitions of fractional integrals and fractional derivatives in the literature that

differ by the kernel used in its definition. To unify different integro-differential operators into general classes, the

theory of fractional calculus evolved to a more general setting called generalised fractional calculus. Examples of

such classes are the ψ-fractional calculus with respect to a given function ψ, the weighted ψ-fractional calculus,

and fractional calculus with general analytic kernels. This variety of classes is justified by the need for operators

with different structures to successfully model a large number of processes and phenomena that exist in the real

world.

In [28,39] the authors proposed a fractional integral operator with respect to another function ψ, obtaining a

general operator, in the sense that it is enough to choose a function ψ with certain properties to obtain the most

∗The final version is published in Chaos, Solitons & Fractals, 162 (2022), Article ID: 112276 (26 pp). It as available via the

website https://doi.org/10.1016/j.chaos.2022.112276
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of the existing fractional integral operators. Attempting to unify several definitions of fractional derivatives into

a single one, the concept of fractional derivative of a function with respect to another function was recently

introduced. In 2017, Almeida [2] proposed a new fractional derivative called ψ-Caputo that generalizes a class

of fractional derivatives in the Caputo (or Dzerbayshan-Caputo) sense. The same idea can be adapted to define

the ψ-Riemmann-Liouville fractional derivative. In 2018, Sousa and Oliveira [46] unified both definitions using

Hilfer’s idea of interpolating between Riemann-Liouville and Caputo fractional derivatives by introducing a

two-parameter family of fractional derivatives of order α > 0 and type µ ∈ [0, 1] which depends on an arbitrary

function ψ, and called it the ψ-Hilfer fractional derivative. Their approach allows obtaining as special cases

some well-known fractional derivatives: Caputo, Riemann-Liouville, Hadamard, Katugampola, Chen, Jumarie,

Prabhakar, Erdélyi-Kober, Weyl, among others (see [46, Sec. 5]).

The Hilfer and ψ-Hilfer fractional derivatives possess different degrees of arbitrariness that are important

for applications. The type-parameter produces more stationary states, provides an extra degree of freedom on

the initial condition, and increases the flexibility for the description of complex data. It was first used by Hilfer

to describe the dynamics in glass formers over an extremely large-frequency window (see [23]). During the last

years fractional differential equations with Hilfer and ψ-Hilfer derivatives were studied by several authors, see

e.g. [12,30,41,45,48]. Moreover, the arbitrariness in the function ψ allows to construct different kernels for the

fractional derivative with different properties of relaxation and memory processes, which are important to better

describe the dynamics of a given problem and to model more complex physical phenomena. In [2], the author

considered the ψ-Caputo derivative with different functions ψ to study the population growth within Malthus

law and concluded that these generalised derivatives describe more efficiently the dynamics of the model due to

the freedom of choice of the kernel. Recently, in [42], the author used the Hilfer fractional derivative to model

alcohol concentration in human blood. The numerical results show that the arbitrariness of the fractional order

and type parameters gives more flexibility in the characterization of the phenomena in different parts of the

human body.

Motivated by our previous works on the study of fractional diffusion equations we investigate the time-

fractional telegraph equation (TFTE) with ψ-Hilfer fractional derivatives. The classical telegraph equation was

first derived by Lord Kelvin in the 19th century [47]. It is a hyperbolic partial differential equation of the form

c2 ∂
2
ttu (x, t) + c1 ∂tu (x, t)− c20 ∂

2
xxu (x, t) + d u (x, t) = q (x, t) , x ∈ R, t > 0.

This equation was proposed by Cattaneo in 1958 (see [10]) to overcome the problem of infinite propagation

velocity in heat transmission. Over the years, this equation and its time-fractional versions appeared in the

study of several phenomena such as transmission lines for all frequencies [27], random walks [4], solar particle

transport [13], oceanic diffusion [34], wave propagation [50], damped small vibrations, anomalous diffusion and

wave-like processes [6, 33, 35, 36], scalar part of the Maxwell equations.

The TFTE with time-fractional derivatives of orders α1 ∈]0, 1] and α2 ∈]1, 2] was studied from the analytical,

numerical, and probabilistic points of view by several authors. In [9], Cascaval et al. discussed the well-posedness

of some initial-boundary value problems for the TFTE as well as the asymptotic behaviour of the solutions.

Beghin and Orsingher considered the particular case when α2 = 2α1 with α1 a rational number, and proved

that the solutions of the associated Cauchy problem can be represented as densities of processes obtained

by means of the composition of the telegraph process with a process representing time (see [5]). In [36] the

authors studied the neutral case of the TFTE and obtained an explicit Fourier representation of the fundamental

solution (FS) and made a probabilistic interpretation of the FS in terms of stable probability density functions.

Particular attention was given to the case α1 = 1/2 and α2 = 1 due to the connection of the telegraph process

with Brownian motion. Some of these results were generalized by Camargo et al. in [8] for general α1 and

α2 and studied later by Boyadjiev and Luchko in [6]. Chen et al. [11] discussed the solution of the TFTE

with different types of boundary conditions by using the method of separating variables. In [41], the authors

considered a generalised telegraph equation with time-fractional derivatives in the Hilfer and Hadamard senses

and space-fractional derivatives in the sense of Riesz-Feller. In [32], Mamchuev considered the inhomogeneous

TFTE with Caputo derivatives and obtained a general representation of the regular solution in a rectangular

domain in terms of FS by the Green’s function method. Górska et al. (see [22]) considered various types

of generalized telegraph equations and determine the conditions under which solutions can be recognized as

probability density distributions. We refer the interested reader to the recent survey paper [33] where its is

presented a very complete review of the fractional telegraph process.
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The works [15–18, 35, 37] are devoted to the study of the TFTE in the multidimensional case with n space

variables, where the second derivative in space is replaced by the Euclidean Laplace operator. In [35] the authors

solved the multi-dimensional TFTE with multi-term time-fractional derivatives and proved that its fundamental

solution is the law of a stable isotropic multi-dimensional process time-changed. Ovidio et al. [37] constructed

compositions of vector processes whose distributions are related to space-time fractional n-dimensional telegraph

equations. In [16, 18] were employed Fourier, Laplace, and Mellin transform techniques to obtain the first and

second FS. Moreover, the application of the Residue Theorem allowed obtaining double series representation

for the FS of the TFTE in higher dimensions. Connections of the TFTE with fractional Clifford analysis and

Sturm-Liouville theory were presented in [17] and [15].

In this paper, we present a unified approach for the complete TFTE in the multidimensional case using

time-fractional ψ-Hilfer derivatives subject to some initial and boundary conditions. Our main results appear

in Sections 3, 5, and 6. In Theorem 3.1 we obtain an integral representation of the solution of our problem by

series of classical convolution and ψ-convolution integrals involving inverse Fourier integrals. For the particular

case d = 0, these integrals are calculated explicitly and are shown to correspond to Fox H-functions of one real

variable. Consequently, we obtain another integral representation of the solution that we describe in Theorem

3.3. Finally, our third main result answers the question under which conditions the FS of the TFTE with

ψ-Hilfer derivatives can be understood as a probability density function in the one-dimensional case. We prove

in Theorem 6.1 that this is possible only for ψ-Caputo fractional derivatives, and for every 0 < α1 < 1 and

1 ≤ α2 < 2. This result generalises the correspondent one in [36] and gives a definite answer to this question.

In Section 4, we obtain a double series representation of the FS for the odd space dimension and analyse its

convergence using Horn’s technique (see Appendix). Fractional moments of the FS are computed in Section 5 as

functions of time and their asymptotic behaviours are deduced for short and long times. Regarding the second-

order moment (also known as the mean-square displacement) we provide an interpretation of the behaviour of

the FS in terms of sub- and superdiffusion for different choices of the function ψ and the fractional parameters.

Throughout the paper, we present and analyse some graphical representations of the FS for different ψ-Hilfer

derivatives. In the last section, particular cases are addressed to show the consistency of our results.

2 Preliminaries

We start this section by presenting some concepts related to fractional integrals and derivatives of a function f

with respect to another function ψ (for more details see [46] and references therein).

Definition 2.1 (cf. [46, Def. 4]) Let (a, b) be a finite or infinite interval on the real line R, α > 0, and ψ

a positive and monotone increasing function on (a, b) having a continuous derivative ψ′ in (a, b). The left

fractional integral of a function f with respect to another function ψ on [a, b] is defined by

(
Iα;ψ
a+

f
)
(t) =

1

Γ (α)

∫ t

a

ψ′ (w) (ψ (t)− ψ (w))
α−1

f (w) dw, t > a. (1)

Next, we give the definition of the so-called ψ-Hilfer fractional derivative of a function f with respect to another

function.

Definition 2.2 (cf. [46, Def. 7]) Let α > 0 and m = [α] + 1, where [α] denotes the integer part of α. Let

also I = [a, b] be a finite or infinite interval on the real line and f, ψ ∈ Cm [a, b] two functions such that ψ is

a positive monotone increasing function and ψ′ (t) 6= 0, for all t ∈ I. The ψ-Hilfer left fractional derivative
HD

α,µ;ψ
t,a+

of order α and type µ ∈ [0, 1] is defined by

(
H
D
α,µ;ψ
a+

f
)
(t) = I

µ(m−α);ψ
a+

(
1

ψ′ (t)

d

dt

)m
I
(1−µ)(m−α);ψ
a+

f (t) . (2)

We observe that when µ = 0 we recover the left Riemann-Liouville fractional derivative of a function with

respect to ψ (see [46, Def. 5]) and when µ = 1 we obtain the left Caputo fractional derivative of a function

with respect to ψ (see [46, Def. 6]). In Section 5 of [46] is presented a list of several fractional integrals and

fractional derivatives that can be obtained from (1) and (2), respectively, for different choices of ψ and µ. In the

following table, we present the fractional derivatives that are considered in Subsections 4.1 and 6.2 to graphically

represent the first fundamental solution of our problem in the one-dimensional case.
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ψ (t) I µ Designation

0 Riemann-Liouville
t R+

1 Caputo

0 Katugampola
tρ, ρ ∈ R

+
R

+

1 Caputo-Katugampola

0 Hadamard
ln t ]1,+∞[

1 Caputo-Hadamard

0 Exponential type
t et R

+

1 Caputo-Exponential type

Table 1: Some particular cases of ψ-Hilfer derivatives.

The previous definitions of fractional integrals and derivatives can be naturally extended to Rn considering

partial fractional integrals and partial fractional derivatives (see Chapter 5 in [39]).

Now, we recall some special functions used in this article and some of their main properties. The Gamma

function (see [1]) is defined by the following integral

Γ (z) =

∫ +∞

0

tz−1 e−t dt, Re (z) > 0,

and admits an analytic continuation to the whole complex plane as a meromorphic function with simple poles

at the negative integers and zero. The Gamma function satisfies many identities. The following ones are used

in this work:

Γ (z + n) = (z)n Γ (z) , n ∈ N0, (3)

Γ (z − n) =
(−1)

n
Γ (z)

(1− z)n
, n ∈ N0, (4)

Γ

(
z +

1

2

)
=

21−2z
√
π Γ (2z)

Γ (z)
, (5)

Γ (z) Γ (−z) = −π
z sin (πz)

, (6)

Γ

(
1

2
− z

)
=

π

cos (πz) Γ
(
1
2 + z

) . (7)

The residues of the poles of the Gamma function at s = −k, k ∈ Z
+
0 , are given by

ress=−kΓ (s) =
(−1)k

k!
, k ∈ Z

+
0 . (8)

The three parameter Mittag-Leffler function Eβ3

β1,β2
(z) (see [20]), is defined in terms of power series by

Eβ3

β1,β2
(z) =

∞∑

k=0

(β3)k z
k

k! Γ (β1k + β2)
, z ∈ C, β1, β2, β3 ∈ R, β1 > 0, (9)

where (β3)k is the Pochhammer symbol, and satisfies the following addition formula (see (5.1.12) in [20])

z Eβ3

β1,β2
(z) = Eβ3

β1,β2−β1
(z)− Eβ3−1

β1,β2−β1
(z) . (10)

When z = t ∈ R+, the first terms in the power series (9) give the following asymptotic expansion for t→ 0+:

tβ2−1Eβ3

β1,β2

(
−atβ1

)
∼ tβ2−1

(
1

Γ (β2)
− aβ3 t

β1

Γ (β1 + β2)

)
(11)

with β2, a > 0. When t → +∞, focusing just on the leading term of the expansion (9), one can infer that for

β2 6= β1β3 (see formula (4.25) in [24])

tβ2−1Eβ3

β1,β2

(
−atβ1

)
∼ a−β3

tβ2−β1β3−1

Γ (β2 − β1β3)
, as t→ +∞. (12)
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The multivariate Mittag-Leffler function E(a1,...,an),b (z1, . . . , zn) of n complex variables z1, . . . , zn ∈ C with

complex parameters a1, . . . , an, b ∈ C (with positive real parts) is defined by (see [31])

E(a1,...,an),b (z1, . . . , zn) =

+∞∑

k=0

∑

l1+...+ln=k

l1,...,ln≥0

(
k

l1, . . . , ln

) ∏n
i=1 z

li
i

Γ (b+
∑n

i=1 aili)
, (13)

where the multinomial coefficients are given by
(

k

l1, . . . , ln

)
:=

k!

l1!× . . .× ln!
.

When n = 2 we obtain the bivariate Mittag-Leffler function which can be written as

E(a1,a2),b (z1, z2) =

+∞∑

l1=0

+∞∑

l2=0

(l1 + l2)!

l1! l2!

zl11 zl22
Γ (b+ a1l1 + a2l2)

. (14)

The Fox H-function Hm,n
p,q (z) is defined by means of a Mellin-Barnes type integral

Hm,n
p,q


 z

(a1, α1) , . . . , (ap, αp)

(b1, β1) , . . . , (bq, βq)


 =

1

2πi

∫

L

∏m
j=1 Γ (bj + βjs)

∏n
i=1 Γ (1− ai − αis)∏p

i=n+1 Γ (ai + αis)
∏q
j=m+1 Γ (1− bj − βjs)

z−s ds, (15)

where an empty product is interpreted as 1. Moreover, z−s = exp [−s (ln |z|+ i arg z)], where arg z is not

necessarily the principal value, and the parameters ai, bj ∈ C, and αi, βj ∈ R+, for i = 1, . . . , p and j = 1, . . . , q,

are restricted that none of the poles of the integrand coincide. The integration path L is the infinite contour,

indented if necessary, separating all the left poles of the Gamma functions Γ (bj + βjs), j = 1, . . . ,m from the

right poles of the Gamma functions Γ (1− ai − αis), i = 1, . . . , n, and has one of the following forms:

• L = L−∞ is a left loop situated in a horizontal strip starting at the point −∞+ iϕ1 and terminating at

the point −∞+ iϕ2 with −∞ < ϕ1 < ϕ2 < +∞;

• L = L+∞ is a right loop situated in a horizontal strip starting at the point +∞+ iϕ1 and terminating at

the point +∞+ iϕ2 with −∞ < ϕ1 < ϕ2 < +∞;

• L = Liγ∞ is a contour starting at the point γ − i∞ and terminating at the point γ + i∞, where γ ∈ R.

The conditions for the analyticity and convergence of the Fox H-function, and the orientation of the contour1

L are presented in Theorems 1.1 and 1.2 in [29].

The H-function (15) was extended to several complex variables. For the case of two complex variables it is

defined via a double Mellin-Barnes type integral of the form (see [7])

H0,n1;m2,n2;m3,n3
p1,q1; p2,q2; p3,q3



z1

z2

(aj ;αj , Aj)1,p1 ; (cj , γj)1,p2 ; (ej , Ej)1,p3

(bj;βj , Bj)1,q1 ; (dj , δj)1,q2 ; (fj , Fj)1,q3




=
1

(2πi)
2

∫

L2

∫

L1

φ (s, w) φ1 (s) φ2 (w) z
s
1 z

w
2 ds dw, (16)

where

φ (s, w) =

∏n1

i=1 Γ (1− ai + αis+Aiw)∏p1
i=n1+1 Γ (ai − αis−Aiw)

∏q1
j=1 Γ (1− bj + βjs+Bjw)

,

φ1 (s) =

∏m2

j=1 Γ (dj − δjs)
∏n2

i=1 Γ (1− ci + γis)∏q2
j=m2+1 Γ (1− dj + δjs)

∏p2
i=n2+1 Γ (ci − γis)

,

φ2 (w) =

∏m3

j=1 Γ (fj − Fjw)
∏n3

i=1 Γ (1− ei + Eiw)∏q3
j=m3+1 Γ (1− fj + Fjw)

∏p3
i=n3+1 Γ (ei − Eiw)

.

1To see some examples of the contour L in particular cases, the interested reader can consult the webpage

https://homepage.tudelft.nl/11r49/teaching/specfunc/hyper/barnes.html
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Here, x, y ∈ C, mi, ni, pi, qi ∈ Z such that 0 ≤ mi ≤ qi, 0 ≤ ni ≤ pi (i = 1, 2, 3); ai, bj , ci, dj , ei, fj ∈ C,

αi, Ai, βj , Bj , γi, δj , Ei, Fj ∈ R+, an empty product is interpreted as 1, and the sequence of parameters (ai),

(bj), (ci), (dj), (ei), and (fj) are restricted that none of the poles of the integrand coincide. The contour L1 in

the complex s-plane, and the contour L2 in the complex w-plane, are of Mellin-Barnes type with indentations,

if necessary, to ensure that they separate one set of poles from the other. The conditions for the analyticity and

convergence of this special function, its general properties, and the orientation of the contours L1 and L2 are

studied in [7, 25].

In this work, some integral transforms are used, namely, the ψ-Laplace, the Fourier, and the Mellin trans-

forms. The ψ-Laplace transform of a real valued function f with respect to ψ is defined by (see [45, Def.

13])

Lψ {f (t)} (s) = f̃ψ (s) =

∫ +∞

0

e−sψ(t) ψ′ (t) f (t) dt, Re (s) ∈ C

where ψ is a positive monotone increasing function in R
+
0 such that ψ (0+) = 0. The ψ-Laplace transform may

be written as the following operator composition involving the classical Laplace transform (cf. [45, Thm. 4])

Lψ = L◦Qψ−1 , where
(
Qψ−1f

)
(t) = f

(
ψ−1 (t)

)
is the composition operator of f with ψ−1. As a consequence,

if f is a function whose classical Laplace transform is f̃ (s), then the ψ-Laplace transform of f (ψ (t)) is also

f̃ (s) (see [45, Cor. 2])

L{f (t)} (s) = f̃ (s) ⇒ Lψ {f (ψ (t))} (s) = f̃ (s) .

Concerning the inverse ψ-Laplace transform, it can be written as the following operator composition

L−1
ψ = Qψ ◦ L−1, where (Qψf) (t) = f (ψ (t)) , (17)

i.e.,

L−1
ψ

{
f̃ψ (s)

}
(t) =

1

2πi

∫ c+i∞

c−i∞
esψ(t) f̃ψ (s) ds,

where Re (s) = c. We note that the definition of the ψ-Laplace can be adapted to any interval [a,+∞[⊆ R
+
0 ,

with ψ satisfying ψ (a+) = 0. This is important in our work so that the ψ-Hilfer derivative covers the largest

number of fractional derivatives. When the ψ-Laplace transform is applied to the ψ-Hilfer derivative, we get

(see [45, Thm. 6])

Lψ
{
H
D
α,µ;ψ
a+

f (t)
}
(s) = sα f̃ψ (s)−

m−1∑

j=0

sm−µ(m−α)−1−j
(
I
(1−µ)(m−α)−j,ψ
a+

f
) (
a+
)
, (18)

where m = [α] + 1 and the initial-value terms
(
I
(1−µ)(m−α)−j,ψ
a+

f
)
(a+) are evaluated at the limit t→ a+. The

ψ-Laplace convolution of two functions is defined by (see [45, Def. 15])

(f ∗ψ g) (t) =

∫ t

0

f
(
ψ−1 (ψ (t)− ψ (w))

)
ψ′ (w) g (w) dw, t ∈ R

+, (19)

and the correspondent Convolution Theorem is (see [45, Thm. 8])

Lψ {(f ∗ψ g) (t)} (s) = Lψ {f} (s) Lψ {g} (s) . (20)

The ψ-Laplace transform of the power function is given by (see (2.1.1.1) in [38])

Lψ
{
ψ (t)ν−1

}
(s) =

Γ (ν)

sν
, ν > 0. (21)

For the exponential function we have (see 2.2.2.5 in [38])

Lψ
{
ψ (t)

− 3
2 e−

ν
ψ(t)

}
(s) =

√
π

ν
e−2

√
νs, ν > 0. (22)
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From expression (5.1.33) in [20], the ψ-Laplace transform of the three parameter Mittag-Leffler function is given

by

Lψ
{
ψ (t)

β2−1
Eβ3

β1,β2

(
λψ (t)

β1

)}
(s) =

sβ1β3−β2

(sβ1 − λ)
β3
. (23)

Moreover, from relation (17.6) in [26] we have that

Lψ
{
ψ (t)

α−γ
+∞∑

p=0

(
−aψ (t)

α−β
)p
Ep+1
α,α+(α−β)p−γ+1 (−bψ (t)

α
)

}
(s) =

sγ−1

sα + asβ + b
, (24)

where Re (α) ,Re (β) ,Re (γ) ∈ R+,
∣∣∣ asβ
sα+β

∣∣∣< 1, and provided that the series in (24) is convergent.

The second integral transform of foremost importance that we will use is the n-dimensional Fourier transform.

For a real-valued integrable function f on Rn, it is defined by (see [28])

F {f (x)} (κ) = f̂ (κ) =

∫

Rn

eiκ·x f (x) dx, x, κ ∈ R
n,

while the corresponding inverse Fourier transform is formally given by

f (x) = F−1
{
f̂ (κ)

}
(x) =

1

(2π)
n

∫

Rn

e−iκ·x f̂ (κ) dκ. (25)

Associated with the Fourier transform we have the well-known Convolution Theorem:

F {(f ∗x g) (x)} (κ) = F {f} (κ) F {g} (κ) , (26)

where the convolution ∗x is given by

(f ∗x g) (x) =

∫

Rn

f (x− z) g (z) dz. (27)

The n-dimensional Laplace operator ∆x =
∑n
i=1

∂2

∂x2
i

has Fourier symbol − |κ|2, i.e.:

F {∆xf (x)} (κ) = − |κ|2 F {f (x)} (κ) . (28)

For the Cauchy distribution in R we have the following Fourier relation:

F
{
a1
a2
e−a2|x|

}
(κ) =

2a1
a22 + κ2

, x, κ ∈ R, a1, a2 > 0. (29)

Another important integral transform that we use in this work is the Mellin transform. For f locally integrable

on ]0,+∞[ it is defined by (see [28])

M{f (w)} (s) = f∗ (s) =

∫ +∞

0

ws−1 f (w) dw, s ∈ C, (30)

and the inverse Mellin transform is formally given by

f (w) = M−1 {f∗ (s)} (w) =
1

2πi

∫ c+i∞

c−i∞
w−s f (s) ds, w > 0, c = Re (s) . (31)

The condition for the existence of (30) is that −p < c < q (called the fundamental strip), where p, q, are the

order of f at the origin and +∞, respectively. The integration in (31) is performed along the imaginary axis

and the result does not depend on the choice of c inside the fundamental strip. More information about this

transform and its properties can be found, for example, in [28]. The Mellin convolution between two functions

is defined by

(f ∗M g) (x) =

∫ +∞

0

f
(x
u

)
g (u)

du

u
, (32)

and satisfies the Mellin Convolution Theorem (see formula (1.4.40) in [28])

M{f ∗M g} (s) = M{f} (s) M{g} (s) .
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The following relation holds (see (1.4.30) in [28])

M
{
f

(
1

x

)}
(s) = M{f} (−s) . (33)

The Mellin-transform of the three-parameter Mittag-Leffler function is given by (see Formula (4.9.3) in [20])

M
{
Eβ3

β1,β2
(−z)

}
(s) =

Γ (s) Γ (β3 − s)

Γ (β3) Γ (β2 − β1s)
. (34)

Throughout the paper, we assume that all the involved functions are ψ-Laplace, Fourier, and Mellin trans-

formable.

3 Generalized time-fractional telegraph equation with ψ-Hilfer deriva-

tives

In this work, we consider the following time-fractional telegraph equation

c2
H∂α2,µ2;ψ

t,a+
u (x, t) + c1

H∂α1,µ1;ψ
t,a+

u (x, t)− c20 ∆xu (x, t) + d2 u (x, t) = q (x, t) , (35)

subject to the following initial and boundary conditions

lim
|x|→+∞

u (x, t) = 0
(
I
(1−µ1)(1−α1);ψ
t,a+

u
) (
x, a+

)
= f (x) (36)

(
I
(1−µ2)(2−α2);ψ
t,a+

u
) (
x, a+

)
= g1 (x)

∂

∂t

[(
I
(1−µ2)(2−α2);ψ
t,a+

u
)] (

x, a+
)
= g2 (x) , (37)

where the second condition in (36) and the conditions (37) are evaluated at the limit t→ a+. Moreover, c1 ≥ 0,

c2 > 0, d ∈ R, (x, t) ∈ Rn × I, with I = [a, b] being a finite or infinite interval on R+, ∆x is the classical

Laplace operator in Rn, the partial time-fractional derivatives of orders α1 ∈ ]0, 1] and α2 ∈]1, 2], and types

µ1, µ2 ∈ [0, 1], respectively, are the ψ-Hilfer derivatives given by (2), ψ is a function under the conditions of

Definition 2.2, q belongs to L1 (R
n × I), and f, g1, g2 ∈ L1 (R

n). We look for solutions u (x, t) of our problem

in the space C2 (Rn)× C2 (a, b) with possible exception at x = 0.

To obtain the analytical solution of (35)-(37) we start by applying to (35) the Fourier transform to the space

variable x and the ψ-Laplace transform to the variable t, and then we solve the equation in the Fourier-Laplace

domain. After that, we invert the ψ-Laplace transform and then invert the Fourier transform of the result. For

the inversion of the ψ-Laplace transform we take into account the operational rules presented in [45], while the

inversion of the Fourier transform is performed via the Mellin transform.

3.1 Solution in the Fourier-Laplace domain

Let us start by applying to (35) the ψ-Laplace transform with respect to the time variable t ∈ I and the

n-dimensional Fourier transform with respect to the space variable x ∈ Rn. Taking into account relations (18)

and (28), and the initial conditions in (36) and (37), then (35) transforms in the Fourier-Laplace domain to the

equation

c2 s
α2 ̂̃uψ (κ, s)− c2 ĝ1 (κ) s

1−µ2(2−α2) − c2 ĝ2 (κ) s
−µ2(2−α2)

+ c1 s
α1 ̂̃uψ (κ, s)− c1 f̂ (κ) s

−µ1(1−α1) + c20 |κ|2 ̂̃uψ (κ, s) + d2 ̂̃uψ (κ, s) = ̂̃qψ (κ, s) . (38)

Solving the above equation in order to ̂̃uψ, we obtain:

̂̃uψ (κ, s) =
c1
c2
f̂ (κ)

s−µ1(1−α1)

sα2 + c1
c2

sα1 +
c20
c2

|κ|2 + d2

c2

+ ĝ1 (κ)
s1−µ2(2−α2)

sα2 + c1
c2

sα1 +
c20
c2

|κ|2 + d2

c2

+ ĝ2 (κ)
s−µ2(2−α2)

sα2 + c1
c2

sα1 +
c20
c2

|κ|2 + d2

c2

+
1

c2
̂̃qψ (κ, s)

1

sα2 + c1
c2

sα1 +
c20
c2

|κ|2 + d2

c2

, (39)

where f̂ , ĝ1, and ĝ2 are the Fourier transforms of the functions f , g1, and g3, respectively. Expression (39)

corresponds to the solution in the Fourier-Laplace domain of our problem (35)-(37).
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3.2 Solution in the space-time domain

Now, we show how to obtain our solution in the space-time domain. Applying the inverse ψ-Laplace transform

to (39) and taking into account (24) and (20), we obtain

û (κ, t)

=
c1
c2
f̂ (κ)ψ (t)

α2−1+µ1(1−α1)

×
+∞∑

p=0

(
−c1
c2
ψ (t)

α2−α1

)p
Ep+1
α2,α2+(α2−α1)p+µ1(1−α1)

(
− 1

c2

(
c20 |κ|2 + d2

)
ψ (t)

α2

)

+ ĝ1 (κ)ψ (t)α2−2+µ2(2−α2)

×
+∞∑

p=0

(
−c1
c2
ψ (t)

α2−α1

)p
Ep+1
α2,α2+(α2−α1)p−1+µ2(2−α2)

(
− 1

c2

(
c20 |κ|2 + d2

)
ψ (t)

α2

)

+ ĝ2 (κ)ψ (t)
α2−1+µ2(2−α2)

×
+∞∑

p=0

(
−c1
c2
ψ (t)α2−α1

)p
Ep+1
α2,α2+(α2−α1)p+µ2(2−α2)

(
− 1

c2

(
c20 |κ|2 + d2

)
ψ (t)α2

)

+
1

c2
q̂ (κ, ψ (t)) ∗ψ

+∞∑

p=0

(
−c1
c2
ψ (t)

α2−α1

)p
ψ (t)

α2−1
Ep+1
α2,α2+(α2−α1)p

(
− 1

c2

(
c20 |κ|2 + d2

)
ψ (t)

α2

)
, (40)

where the ψ-convolution is given by (19). From the definition of the bivariate Mittag-Leffler function (see (14))

we can rewrite (40) as

û (κ, t)

=
c1
c2
f̂ (κ)ψ (t)

α2−1+µ1(1−α1)E(α2−α1,α2),α2+µ1(1−α1)

(
−c1
c2
ψ (t)

α2−α1 ,− 1

c2

(
c20 |κ|2 + d2

)
ψ (t)

α2

)

+ ĝ1 (κ)ψ (t)
α2−2+µ2(2−α2)E(α2−α1,α2),α2−1+µ2(2−α2)

(
−c1
c2
ψ (t)

α2−α1 ,− 1

c2

(
c20 |κ|2 + d2

)
ψ (t)

α2

)

+ ĝ2 (κ)ψ (t)
α2−1+µ2(2−α2)E(α2−α1,α2),α2+µ2(2−α2)

(
−c1
c2
ψ (t)

α2−α1 ,− 1

c2

(
c20 |κ|2 + d2

)
ψ (t)

α2

)

+
1

c2
q̂ (κ, ψ (t)) ∗ψ

[
ψ (t)α2−1 E(α2−α1,α2),α2

(
−c1
c2
ψ (t)α2−α1 ,− 1

c2

(
c20 |κ|2 + d2

)
ψ (t)α2

)]
. (41)

Therefore, in the Fourier domain the solution involves series of three-parameter Mittag-Leffler functions of

one variable or just bivariate Mittag-Leffler functions. It follows from the following asymptotic expansion of

Eβ3

β1,β2
(−x) in the negative semi-axes (see Theorem 5.4 in [20])

Eβ3

β1,β2
(−x) ∼ x−β3

Γ (β3)

+∞∑

k=0

(−1)
k
Γ (k + x)

Γ (β2 − β1 (k + β3))
x−k, t→ +∞,

where 0 < β1 < 2, that the three-parameter Mittag-Leffler functions in (41) belong to the space L1 (R
n). Hence,

applying the inverse Fourier transform and taking into account (25) and (26), we obtain from (40)

u (x, t)

=
c1
c2
ψ (t)

α2−1+µ1(1−α1)

×
+∞∑

p=0

(
−c1
c2
ψ (t)

α2−α1

)p
f (x) ∗x F−1

{
Ep+1
α2,α2+(α2−α1)p+µ1(1−α1)

(
− 1

c2

(
c20 |κ|2 + d2

)
ψ (t)

α2

)}
(x, t)
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+ ψ (t)
α2−2+µ2(2−α2)

×
+∞∑

p=0

(
−c1
c2
ψ (t)

α2−α1

)p
g1 (x) ∗x F−1

{
Ep+1
α2,α2+(α2−α1)p−1+µ2(2−α2)

(
− 1

c2

(
c20 |κ|2 + d2

)
ψ (t)

α2

)}
(x, t)

+ ψ (t)
α2−1+µ2(2−α2)

×
+∞∑

p=0

(
−c1
c2
ψ (t)

α2−α1

)p
g2 (x) ∗x F−1

{
Ep+1
α2,α2+(α2−α1)p+µ2(2−α2)

(
− 1

c2

(
c20 |κ|2 + d2

)
ψ (t)

α2

)}
(x, t)

+
1

c2
q (x, ψ (t)) ∗x ∗ψ

+∞∑

p=0

{(
−c1
c2
ψ (t)

α2−α1

)p

×
[
ψ (t)

α2−1 F−1

{
Ep+1
α2,α2+(α2−α1)p

(
− 1

c2

(
c20 |κ|2 + d2

)
ψ (t)

α2

)}
(x, t)

]}
. (42)

Considering the following formula presented in [39] for the inverse Fourier transform of radial functions:

1

(2π)
n

∫

Rn

e−ix·κ ϕ (|κ|) dκ =
|x|1−n

2

(2π)
n
2

∫ +∞

0

ϕ (w) w
n
2 Jn

2
−1 (|x|w) dw, (43)

which is valid for any function ϕ ∈ L1 (R
n) (see Lemma 25.1 in [39]), we obtain the following result.

Theorem 3.1 The solution of the generalized time-fractional telegraph equation with ψ-Hilfer derivatives (35)

subject to the conditions (36) and (37) is given, in terms of convolution integrals, by

u (x, t)

=
c1
c2
ψ (t)α2−1+µ1(1−α1)

+∞∑

p=0

{(
−c1
c2
ψ (t)α2−α1

)p

× f (x) ∗x
[
|x|1−n

2

(2π)
n
2

∫ +∞

0

Ep+1
α2,α2+(α2−α1)p+µ1(1−α1)

(
− 1

c2

(
c20 w

2 + d2
)
ψ (t)

α2

)
w
n
2 Jn

2 −1 (|x|w) dw
]}

+ ψ (t)
α2−2+µ2(2−α2)

+∞∑

p=0

{(
−c1
c2
ψ (t)

α2−α1

)p

× g1 (x) ∗x
[
|x|1−n

2

(2π)
n
2

∫ +∞

0

Ep+1
α2,α2+(α2−α1)p−1+µ2(2−α2)

(
− 1

c2

(
c20 w

2 + d2
)
ψ (t)α2

)
w
n
2 Jn

2
−1 (|x|w) dw

]}

+ ψ (t)
α2−1+µ2(2−α2)

+∞∑

p=0

{(
−c1
c2
ψ (t)

α2−α1

)p

× g2 (x) ∗x
[
|x|1−n

2

(2π)
n
2

∫ +∞

0

Ep+1
α2,α2+(α2−α1)p+µ2(2−α2)

(
− 1

c2

(
c20 w

2 + d2
)
ψ (t)

α2

)
w
n
2 Jn

2 −1 (|x|w) dw
]}

+
1

c2

+∞∑

p=0

{(
−c1
c2
ψ (t)α2−α1

)p

× q (x, ψ (t)) ∗x ∗ψ
[
ψ (t)

α2−1 |x|1−n
2

(2π)
n
2

∫ +∞

0

Ep+1
α2,α2+(α2−α1)p

(
− 1

c2

(
c20 w

2 + d2
)
ψ (t)

α2

)
w
n
2 Jn

2 −1 (|x|w) dw
]}

,

(44)

where the convolutions ∗x and ∗ψ are defined by (27) and (19), respectively.

The consideration of the parameter d in (42) leads to cumbersome formulas for the inverse Fourier transform.

To avoid this, we will consider from now on the case d = 0. The following lemma shows a fundamental formula

for the explicit Fourier inversion of the terms in (42).
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Lemma 3.2 Let β1, β2 ∈ C such that Re(β1) > 0, τ ∈ R+, and κ ∈ Rn. The following multidimensional

Fourier-type relation is valid

F−1
{
Eβ3

β1,β2

(
−τ |κ|2

)}
(x) =

1

π
n
2 |x|n Γ (β3)

H0,2
2,1




4τ

|x|2
(1− n, 1) , (1− β3, 1)

(1− β2, β1)


 , (45)

where H is the Fox H-function defined in (15).

Proof: We start the proof by noting that we want to apply the inverse Fourier transform to a radial function

in the variable κ. Then by (42) we have

F−1
{
Eβ3

β1,β2

(
−τ |κ|2

)}
(x) =

1

(2π)
n

∫

Rn

e−ix·κEβ3

β1,β2

(
−τ |κ|2

)
dκ

=
|x|1−n

2

(2π)
n
2

∫ +∞

0

Eβ3

β1,β2

(
−τw2

)
w
n
2 Jn

2 −1 (|x|w) dw. (46)

To explicitly compute the integral on the right-hand side of (46) we will use the Mellin transform. First, we

rewrite the integral as a Mellin convolution. In fact, considering

h1 (w) = Eβ3

β1,β2

(
−τw2

)
and h2 (w) =

1

(2π)
n
2 |x|w n

2 −1
Jn

2
−1

(
1

w

)
, (47)

and the definition of the Mellin convolution in (32), we have

M{h1 ∗M h2}
(

1

|x|

)
=

∫ +∞

0

h1 (w) h2

(
1

|x|w

)
dw

w

=

∫ +∞

0

Eβ3

β1,β2

(
−τw2

) w n
2 +1 |x| n2 +1

(2π)
n
2 |x|n

Jn
2
−1 (|x|w)

dw

w

=
|x|1−n

2

(2π)
n
2

∫ +∞

0

Eβ3

β1,β2

(
−τw2

)
w
n
2 Jn

2 −1 (|x|w) dw.

From (33) it follows that

M{h1 ∗M h2} (s) = M{h1} (−s) M{h2} (−s) ,

which is equivalent to

M{h1 ∗M h2} (−s) = M{h1} (s) M{h2} (s) . (48)

Let us calculate the Mellin transforms that appear in (48). The Mellin transform of h2 was already calculated

in [49] (see Formula (43)):

M{h2} (s) =
1

π
n−1
2 |x|n 2n−1

Γ (n− s)

Γ
(
n+1
2 − s

2

)
Γ
(
s
2

) . (49)

Concerning the Mellin transform of h1, we take into account the definition of the Mellin transform (see (30))

M{h1} (s) =

∫ +∞

0

ws−1 Eβ3

β1,β2

(
−τw2

)
dw. (50)

Making the change of variables τw2 = z in (50) we obtain

M{h1} (s) =
1

2τ
s
2

∫ +∞

0

z
s
2−1Eβ3

β1,β2
(−z) =

1

2τ
s
2
M
{
Eβ3

β1,β2
(−z)

}(s
2

)
. (51)

Taking into account (34), we have from (51)

M{h1} (s) =
1

2τ
s
2

Γ
(
s
2

)
Γ
(
β3 − s

2

)

Γ (β3) Γ
(
β2 − β1s

2

) . (52)
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Now, using the inverse Mellin transform defined in (31) applied to (48), together with (49) and (52), we obtain

F−1
{
Eβ3

β1,β2

(
−τ |κ|2

)}
(x) =

1

π
n−1
2 (2 |x|)n Γ (β3)

1

2πi

∫

L1

Γ (n− s) Γ
(
β3 − s

2

)

Γ
(
n+1
2 − s

2

)
Γ
(
β2 − β1s

2

)
(√

τ

|x|

)−s
ds. (53)

Making the change of variables z = − s
2 in (53) and using the representation of the Fox H-function presented in

(15), we finally get

F−1
{
Eβ3

β1,β2

(
−τ |κ|2

)}
(x) =

1

π
n
2 |x|n Γ (β3)

1

2πi

∫

L1

Γ
(
n
2 + s

)
Γ (β3 + s)

Γ
(
β2 +

β1s
2

)
(

4τ

|x|2
)s

ds

=
1

π
n
2 |x|n Γ (β3)

H0,2
2,1




4τ

|x|2

(
1− n

2
, 1
)
, (1− β3, 1)

(1− β2, β1)


 ,

which corresponds to our result.

�

By the previous lemma we can rewrite Theorem 3.1 in the case d = 0 using convolution integrals that involve

four functions G1, G2, G3, and G4, that we will describe in the next theorem.

Theorem 3.3 The solution of the generalized time-fractional telegraph equation with ψ-Hilfer derivative (35)

with d = 0, subject to the conditions (36)-(37) is given, in terms of convolution integrals involving Fox H-

functions, by

u (x, t) =

∫

Rn

f (z) G1 (x− z, t) dz +

∫

Rn

g1 (z) G2 (x− z, t) dz

+

∫

Rn

g2 (z) G3 (x− z, t) dz +

∫

Rn

∫ t

0

q (z, ψ (t)) G4

(
x− z, ψ−1 (ψ (t)− ψ (w))

)
ψ′ (w) dw dz, (54)

where G1, G2, G3, and G4 are given by

G1 (x, t) =
c1ψ (t)α2−1+µ1(1−α1)

c2 π
n
2 |x|n

×
+∞∑

p=0

1

p!

(
−c1
c2
ψ (t)

α2−α1

)p
H0,2

2,1


 4c20 ψ (t)

α2

c2 |x|2

(
1− n

2
, 1
)
, (−p, 1)

(1− α2 − (α2 − α1) p− µ1 (1− α1) , α2)


 ,

(55)

G2 (x, t) =
ψ (t)

α2−2+µ2(2−α2)

π
n
2 |x|n

×
+∞∑

p=0

1

p!

(
−c1
c2
ψ (t)

α2−α1

)p
H0,2

2,1


 4c20 ψ (t)

α2

c2 |x|2

(
1− n

2
, 1
)
, (−p, 1)

(2− α2 − (α2 − α1) p− µ2 (2− α2) , α2)


 ,

(56)

G3 (x, t) =
ψ (t)α2−1+µ2(2−α2)

π
n
2 |x|n

×
+∞∑

p=0

1

p!

(
−c1
c2
ψ (t)

α2−α1

)p
H0,2

2,1


 4c20 ψ (t)

α2

c2 |x|2

(
1− n

2
, 1
)
, (−p, 1)

(1− α2 − (α2 − α1) p− µ2 (2− α2) , α2)


 ,

(57)
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and

G4 (x, t) =
ψ (t)

α2−1

c2 π
n
2 |x|n

×
+∞∑

p=0

1

p!

(
−c1
c2
ψ (t)α2−α1

)p
H0,2

2,1


 4c20 ψ (t)α2

c2 |x|2

(
1− n

2
, 1
)
, (−p, 1)

(1− α2 − (α2 − α1) p, α2)


 . (58)

Formulas (54)-(58) give a very general expression for the solution of our problem, which turns its physical

interpretation complicated. However, for special choices of the dimension, the parameters, and the functions

involved, the solution may simplify.

Corollary 3.4 For c1 = 0 in (54)-(58) we obtain the solution of the generalized time-fractional wave equation

with ψ-Hilfer derivative, which amounts to consider G1 (x, t) = 0 in (55) and the first term p = 0 in the series

(56)-(58).

Corollary 3.5 If we consider in the previous theorem

c0 = c2 = 1, g2 (x) = q (x, t) = 0, f (x) = g1 (x) = δ (x) , µ1 = 1, α1 = 0, c1 = −λ

with λ ∈ R, the solution given by (54) corresponds to the eigenfunctions of the generalized time-fractional wave

equation with ψ-Hilfer derivatives in Rn × R+, with initial and boundary conditions (36)-(37).

The functions Gi, i = 1, 2, 3, 4 that appear in Theorem 3.3 can be rewritten in terms of Fox H-functions of

two variables, thus avoiding the appearance of a series of Fox H-functions of one variable. We show how to

proceed to G1, being the reasoning the same for the other functions. Applying the Residue Theorem to the

series in p and Lemma 3.2 to the first term of (44), and taking into account (15) and (16), we get the following

representation of G1 in terms of double Mellin-Barnes integrals and Fox H-function of two variables

G1 (x, t) =
c1ψ (t)α2−1+µ1(1−α1)

c2 π
n
2 |x|n

× 1

(2πi)
2

∫

L1

∫

L2

Γ (1 + w + s) Γ (−w) Γ
(
n
2 + s

)

Γ (α2 + µ1 (1− α1) + (α2 − α1)w + α2s)

(
c1
c2
ψ (t)

α2−α1

)w (
4c20 ψ (t)

α2

c2 |x|2
)s

dw ds

=
c1ψ (t)α2−1+µ1(1−α1)

c2 π
n
2 |x|n H0,1;0,1;1,0

1,1;1,0;0,1




4c20 ψ (t)
α2

c2 |x|2
c1
c2
ψ (t)

α2−α1

(0; 1, 1) ;
(
1− n

2
, 1
)
; −−

(1− α2 − µ1 (1− α1) ;α2, α2 − α1) ; −−; (0, 1)


 .

(59)

The other functions are obtained by the same reasoning applied to the remaining terms of (44):

G2 (x, t)

=
ψ (t)

α2−2+µ2(2−α2)

π
n
2 |x|n H0,1;0,1;1,0

1,1;1,0;0,1




4c20 ψ (t)
α2

c2 |x|2
c1
c2
ψ (t)

α2−α1

(0; 1, 1) ;
(
1− n

2
, 1
)
; −−

(2− α2 − µ2 (2− α2) ;α2, α2 − α1) ; −−; (0, 1)


 , (60)

G3 (x, t)

=
ψ (t)

α2−1+µ2(2−α2)

π
n
2 |x|n H0,1;0,1;1,0

1,1;1,0;0,1




4c20 ψ (t)
α2

c2 |x|2
c1
c2
ψ (t)

α2−α1

(0; 1, 1) ;
(
1− n

2
, 1
)
; −−

(1− α2 − µ2 (2− α2) ;α2, α2 − α1) ; −−; (0, 1)


 , (61)
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and

G4 (x, t) =
ψ (t)

α2−1

c2 π
n
2 |x|n H

0,1;0,1;1,0
1,1;1,0;0,1




4c20 ψ (t)α2

c2 |x|2

c1
c2
ψ (t)

α2−α1

(0; 1, 1) ;
(
1− n

2
, 1
)
; −−

(1− α2;α2, α2 − α1) ; −−; (0, 1)


 . (62)

Applying the conditions (3.5) of Theorem 3.1 in [25], we can guarantee that the double Mellin-Barnes integral

associated to the Fox H-functions of two variables in (59)-(62) are convergent for all x ∈ Rn c0, c1, c2 ∈ R+,

and all admissible functions ψ.

4 Double series representation for the first fundamental solution

In this section we deduce a double series representation for the first fundamental solution G1 of our problem.

This is obtained considering d = q (x, t) = 0 in (35) and

f (x) = g1 (x) = δ (x) =

n∏

j=1

δ (xj) and g2 (x) = 0 (63)

in (36)-(37). Then G1 is given by G1 (x, t) = G1 (x, t)+G2 (x, t), where G1 and G2 are given by (55) and (56),

respectively. Due to the similarities between the expressions of G1 and G2, we present only the deduction of the

double series representation for G1, being the reasoning the same for G2. Taking into account the representation

of the Fox H-functions in terms of Mellin-Barnes integrals given in (15), we have

G1 (x, t) =
c1ψ (t)

α2−1+µ1(1−α1)

c2 π
n
2 |x|n

×
+∞∑

p=0

1

p!

(
−c1
c2
ψ (t)

α2−α1

)p
1

2πi

∫

L1

Γ (1 + p− s) Γ
(
n
2 − s

)

Γ (α2 + µ1 (1− α1) + (α2 − α1) p− α2s)

(
4c20 ψ (t)

α2

c2 |x|2
)−s

ds

︸ ︷︷ ︸
I

, (64)

where L1 = L+∞ since ∆ = α2 − 2 < 0 (cf. Theorem 1.1 in [29]). To find a series representation for the

contour integral I we need to take into account the poles of the Gamma functions in the numerator. When

n is odd we deal only with sequences of simple poles, and when n is even we deal with sequences of simple

and/or double poles. Assuming that n is odd, we have two non-coincident infinite sequences of simple poles at

s = q + p + 1 for q ∈ N0, and at s = k + n
2 , for k ∈ N0, coming from the gamma functions Γ (1 + p− s) and

Γ
(
n
2 − s

)
, respectively. Therefore, applying the Residue Theorem and taking into account (8) we obtain the

following series representation:

I =

+∞∑

q=0

(−1)
q

q!

Γ
(
n
2 − 1− p− q

)

Γ (µ1 (1− α1)− α1p− α2q)

(
c2 |x|2

4c20 ψ (t)α2

)p+q+1

+

+∞∑

k=0

(−1)
k

k!

Γ
(
1− n

2 + p− k
)

Γ
(
α2

(
1− n

2

)
+ µ1 (1− α1) + (α2 − α1) p− α2k

)
(

c2 |x|2
4c20 ψ (t)α2

)k+ n
2

. (65)

The previous series can be combined into a single series. To obtain this, we start by considering the change of

variables m = 2q + 1 and m = 2k in the first and second series in brackets, respectively. Hence, we get

I =

+∞∑

m=1

m odd

(−1)
m−1

2

Γ
(
m+1
2

) Γ
(
n−1
2 − p− m

2

)

Γ
(
α2

2 + µ1 (1− α1)− α1p− α2m
2

)
(

c2 |x|2
4c20 ψ (t)

α2

)p+m
2 + 1

2

+
+∞∑

m=0
m even

(−1)
m
2

Γ
(
m
2 + 1

) Γ
(
1− n

2 + p− m
2

)

Γ
(
α2

(
1− n

2

)
+ µ1 (1− α1) + (α2 − α1) p− α2m

2

)
(

c2 |x|2
4c20 ψ (t)

α2

)m
2 +n

2

. (66)
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To have the same exponent in both series we consider the changes m = r + n− 1 − 2p and m = r in the first

and the second series, respectively, resulting in

I =
−1∑

r=2p−n+2

r odd

(−1)
r+n
2 −p−1

Γ
(
r+n
2 − p

) Γ
(
− r

2

)

Γ
(
α2

(
1− n

2

)
+ µ1 (1− α1) + (α2 − α1) p− α2r

2

)
(

c2 |x|2
4c20 ψ (t)

α2

) r+n
2

+
+∞∑

r=1

r odd

(−1)
r+n
2 −p−1

Γ
(
r+n
2 − p

) Γ
(
− r

2

)

Γ
(
α2

(
1− n

2

)
+ µ1 (1− α1) + (α2 − α1) p− α2r

2

)
(

c2 |x|2
4c20 ψ (t)

α2

) r+n
2

+

+∞∑

r=0
r even

(−1)
r
2

Γ
(
r
2 + 1

) Γ
(
1 + p− r+n

2

)

Γ
(
α2

(
1− n

2

)
+ µ1 (1− α1) + (α2 − α1) p− α2r

2

)
(

c2 |x|2
4c20 ψ (t)

α2

) r+n
2

. (67)

Now, we analyse the coefficients of the odd and even series. For odd r, using (4) and after straightforward

calculations we obtain

(−1)
r+n
2 −p−1

Γ
(
− r

2

)

Γ
(
r+n
2 − p

)
2r+n

=
(−1)

r+n−2
2 −p

Γ
(
− r

2

) (
1− r+n

2

)
p

Γ
(
r+n
2

)
2r+n

. (68)

Considering the following equality proved in [19, Sec. 3.2.1] for r odd

(−1)
r+n−2

2 Γ
(
− r

2

)

Γ
(
r+n
2

) = − (−1)
n−1
2

√
π 2r(

r+1
2

)
n−1
2

r!

we obtain that

(−1)
r+n
2 −p−1

Γ
(
− r

2

)

Γ
(
r+n
2 − p

)
2r+n

= −
(−1)

n−1
2

√
π
(
1− r+n

2

)
p

2n r!
(
r+1
2

)
n−1
2

. (69)

On the other hand, for p even, using (3) and after straightforward calculations we get

(−1)
r
2 Γ

(
1 + p− r+n

2

)

Γ
(
r
2 + 1

)
2r+n

=
(−1)

r
2 Γ

(
1− r+n

2

) (
1− r+n

2

)
p

Γ
(
r
2 + 1

)
2r+n

. (70)

By the equality proved in [19, Sec. 3.2.1] for r even

(−1)
r
2 Γ

(
1− n

2 − r
2

)

Γ
(
r
2 + 1

) =
(−1)

n−1
2

√
π 2r(

r+1
2

)
n−1
2

r!
,

we obtain that

(−1)
r
2 Γ

(
1 + p− r+n

2

)

Γ
(
r
2 + 1

)
2r+n

=
(−1)

n−1
2

√
π
(
1− r+n

2

)
p

2n r!
(
r+1
2

)
n−1
2

. (71)

Hence, from (69) and (71) we see that the coefficients of the series are equal up to a minus sign in the odd series,

which can be included as (−1)
r
for odd and even r. Thus, adding the even and odd series and considering the

change r = 2q + 2− n+ 2p in the finite sum we get

I =
c2 |x|2

4c20 ψ (t)α2

n−3−2p
2∑

q=0

Γ
(
n
2 − 1− p− q

) (
− c1|x|2

4c20
ψ (t)−α1

)p

Γ (µ1 (1− α1)− α1p− α2q) p! q!

(
− c2 |x|2
4c20 ψ (t)α2

)q

+ (−1)
n−1
2

√
π

(
c2 |x|2

4c20 ψ (t)
α2

)n
2

×
+∞∑

r=0

(
1− r+n

2

)
p

(
− c1
c2
ψ (t)α2−α1

)p

Γ
(
α2

(
1− n

2

)
+ µ1 (1− α1) + (α2 − α1) p− α2r

2

) (
r+1
2

)
n−1
2

p! r!

(
−

√
c2 |x|

c0ψ (t)
α2
2

)r
. (72)
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Finally, from (64) and (72), and proceeding in a similar way to G2, we arrive to the following simplified double

series representations of G1 and G2 for the case of n odd:

G1 (x, t) =
c1ψ (t)

µ1(1−α1)−1

4c20 π
n
2 |x|n−2

+∞∑

p=0

n−3−2p
2∑

q=0

Γ
(
n
2 − 1− p− q

) (
− c1|x|2

4c20
ψ (t)

−α1

)p

Γ (µ1 (1− α1)− α1p− α2q) p! q!

(
− c2 |x|2
4c20 ψ (t)α2

)q

+
(−1)

n−1
2

√
πc1 c

n
2 −1
2 ψ (t)

α2(1−n
2 )+µ1(1−α1)−1

(4c20 π)
n
2

×
+∞∑

p=0

+∞∑

r=0

(
1− r+n

2

)
p

(
− c1
c2
ψ (t)

α2−α1

)p

Γ
(
α2

(
1− n

2

)
+ µ1 (1− α1) + (α2 − α1) p− α2r

2

) (
r+1
2

)
n−1
2

p! r!

(
−

√
c2 |x|

c0ψ (t)
α2
2

)r
, (73)

and

G2 (x, t) =
c2 ψ (t)µ2(2−α2)−2

4c20 π
n
2 |x|n−2

+∞∑

p=0

n−3−2p
2∑

q=0

Γ
(
n
2 − 1− p− q

) (
− c1|x|2

4c20
ψ (t)

−α1

)p

Γ (µ2 (2− α2)− 1− α1p− α2q) p! q!

(
− c2 |x|2
4c20 ψ (t)

α2

)q

+
(−1)

n−1
2

√
πc

n
2
2 ψ (t)α2(1−n

2 )+µ2(2−α2)−2

(4c20 π)
n
2

×
+∞∑

p=0

+∞∑

r=0

(
1− r+n

2

)
p

(
− c1
c2
ψ (t)

α2−α1

)p

Γ
(
α2

(
1− n

2

)
− 1 + µ2 (2− α2) + (α2 − α1) p− α2r

2

) (
r+1
2

)
n−1
2

p! r!

(
−

√
c2 |x|

c0ψ (t)
α2
2

)r
. (74)

The absolute convergence of the series in (73) and (74) is guaranteed by applying the ratio test provided by

Horn’s technique. In fact, applying the Lemma A.1 that we proved in the Appendix results that the series in

(73) and (74) are absolutely convergent for all (x, t) ∈ Rn × I and n ∈ N. Furthermore, taking into account the

formula (128) we can interpret the double series in (73) and (74) as generalised Lauricella series.

An important special case can be deduced from (73) and (74). Considering c1 = 0 we obtain the series

representation of the first fundamental solution of the time-fractional wave equation with ψ-Hilfer derivative

for n odd, which is given by

G1 (x, t) =
c2 ψ (t)

µ2(2−α2)−2

4c20 π
n
2 |x|n−2

n−3−2p
2∑

q=0

Γ
(
n
2 − 1− q

)

Γ (µ2 (2− α2)− 1− α2q) q!

(
− c2 |x|2
4c20 ψ (t)

α2

)q

+
(−1)

n−1
2

√
πc

n
2
2 ψ (t)

α2(1−n
2 )+µ2(2−α2)−2

(4c20 π)
n
2

+∞∑

r=0

(
−

√
c2|x|

c0ψ(t)
α2
2

)r

Γ
(
α2

(
1− n

2

)
− 1 + µ2 (2− α2)− α2r

2

) (
r+1
2

)
n−1
2

r!
.

From the series representations obtained previously it is easy to see that the fundamental solution is finite at

the point x = (0, . . . , 0) only in the one-dimensional case, being infinite at x = (0, . . . , 0) for all n ≥ 2, with

n odd. The case of even dimension can be treated in a similar way as it was done in our paper [18]. To not

overload this section, we omit the presentation of the calculations for this case. Finally, we would like to remark

that there is a second fundamental solution G2 assuming d = q (x, t) = 0 and f (x) = g1 (x) = 0 in (35),

and g2 (x) = δ (x) in (36) and (37). Then G2 is given by G2 (x, t) = G3 (x, t), where G3 corresponds to (57).

Similarly as it was done for G1 it is possible to obtain a double series representation of G2.

Remark 4.1 In [3] it was presented a series representation of the first fundamental solution in the one-

dimensional case when the time-fractional derivatives are in the Riemann-Liouville sense. Here, we obtained

a general expression for the first fundamental solution that encompasses several types of fractional derivatives

and arbitrary dimension.

4.1 Graphical representation of the first fundamental solution in the one dimen-

sional case

In this section we present and discuss some plots of the first fundamental solution G1 in the one dimensional

case, i.e., n = 1, for the following types of time-fractional derivatives: Caputo-type (µ1 = µ2 = 1), Riemann-
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Liouville type (µ1 = µ2 = 0), and intermediate types µ1 and µ2. For the three types we consider some particular

values of the fractional parameters α1 and α2, and particular choices of the function ψ. Considering n = 1 in

(73) and (74) the finite sums vanish and, consequently, we get the following double series representation of G1:

G1 (x, t) =
c1 ψ (t)

α2
2 +µ1(1−α1)−1

2c0
√
c2

+∞∑

p=0

+∞∑

r=0

(
1−r
2

)
p

(
− c1
c2
ψ (t)

α2−α1

)p

Γ
(
α2

2 + µ1 (1− α1) + (α2 − α1) p− α2r
2

)
p! r!

(
−

√
c2 |x|

c0ψ (t)
α2
2

)r

+

√
c2 ψ (t)

α2
2 +µ2(2−α2)−2

2c0

+∞∑

p=0

+∞∑

r=0

(
1−r
2

)
p

(
− c1
c2
ψ (t)

α2−α1

)p

Γ
(
α2

2 − 1 + µ2 (2− α2) + (α2 − α1) p− α2r
2

)
p! r!

(
−

√
c2 |x|

c0ψ (t)
α2
2

)r
. (75)

In the following subsections we consider c0 = c1 = c2 = 1 in (75).

4.1.1 Riemann-Liouville type operators

Here we present the graphical representation ofG1 when the time-fractional derivatives are of Riemann-Liouville

type (µ1 = µ2 = 0) of orders α1 and α2.

Figure 1: Plots of G1 (x, t) for ψ (t) = t with t ∈ R+ (Riemann-Liouville fractional derivatives), and ψ (t) = t2

with t ∈ R
+ (Katugampola fractional derivatives). The order of the derivatives are α1 = 0.25 and α2 = 1.25.

Figure 2: Plots of G1 (x, t) for ψ (t) = ln t with t ∈]1,+∞[ (Hadamard fractional derivatives), and ψ (t) = tet

with t ∈ R+. The order of the derivatives are α1 = 0.50 and α2 = 1.50.

From the previous plots, we conclude that theG1 is an even, positive and negative function. The fundamental

solution has two symmetric maximum points that move from the origin as α2 and α1 increase, and a local

negative minimum when x = 0. The plots possess similar behaviour for different choices of ψ, however the

range of the plots and the horizontal shrink is different for each function ψ, due to the nonlinearity of the time

varying.

4.1.2 Caputo type operators

In this section we present the graphical representation of G1 when the time-fractional derivatives are of Caputo

type (µ1 = µ2 = 1) of orders α1 and α2.
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Figure 3: Plots of G1 (x, t) for ψ (t) = t with t ∈ R+ (Caputo fractional derivatives), and ψ (t) = t2 with t ∈ R+

(Caputo-Katugampola fractional derivatives). The order of the derivatives are α1 = 0.50 and α2 = 1.50.

Figure 4: Plots of G1 (x, t) for ψ (t) = ln t and t ∈]1,+∞[(Caputo-Hadamard fractional derivatives), and

ψ (t) = tet and t ∈ R
+. The order of the derivatives are α1 = 0.75 and α2 = 1.75.

We can observe now that the fundamental solution is an even positive function. The different choices of the

function ψ imply different vertical ranges and horizontal shrink. A detailed analysis of the Caputo case will be

performed in Section 6.2.1.

4.1.3 Derivatives of intermediate types

In this section we present the graphical representation of G1 for different types of derivatives, i.e., for different

values of µ1, µ2 ∈]0, 1[ in (75).

Figure 5: Plots of G1 (x, t) for ψ (t) = t with t ∈ R+, µ1 = 0.20, µ2 = 0.30, α1 = 0.25, and α2 = 1.25, and

ψ (t) = ln t with t ∈]1,+∞[, µ1 = 0.60, µ2 = 0.40, α1 = 0.50, and α2 = 1.50.
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Figure 6: Plots of G1 (x, t) for ψ (t) = t
1
2 with t ∈ R+, µ1 = 0.40, µ2 = 0.60, α1 = 0.50, and α2 = 1.50, and

ψ (t) = tet with t ∈ R+, µ1 = 0.60, µ2 = 0.80, α1 = 0.75, and α2 = 1.75.

The previous plots correspond to an interpolation between the Riemann-Liouville and Caputo cases. In

fact, for small values of µ1 and µ2, we see that the fundamental solution is negative near the origin and has a

shape closer to that observed for the Riemann-Liouville case. As µ1 and µ2 increase the fundamental solution

becomes a non-negative function and the shape is more similar to that observed in the Caputo case.

5 Moments of the first fundamental solution

In this section we deduce the expression for some moments of the first fundamental solution G1 introduced in

Section 4. We separate the analysis of the case when n = 1 from the case n ≥ 2.

5.1 One dimensional case

For n = 1, the moments Mγ of order γ > 0 of G1 are given by

Mγ (t) =

∫

R

xγ G1 (x, t) dx.

The previous integral cannot be calculated directly. Therefore, we will compute the moments using Fourier-

Laplace techniques. Considering n = 1 in (39), we have that

Lψ
{
Ĝ1 (κ, t)

}
(κ, s) =

s1−µ2(2−α2) + c1
c2

s−µ1(1−α1)

sα2 + c1
c2

sα1 +
c20
c2
κ2

. (76)

Inverting the Fourier transform in (76) using (29) leads to

Lψ {G1 (x, t)} (x, s) =
√
c2

2c0

s1−µ2(2−α2) + c1
c2

s−µ1(1−α1)

(
sα2 + c1

c2
sα1

) 1
2

exp

(
−
√
c2 |x|
c0

(
sα2 +

c1
c2
sα1

) 1
2

)
. (77)

The ψ-Laplace transform of the moments of order γ > 0 of G1 are given, via (77), by

Lψ {Mγ (t)} (s) =
√
c2
c0

s1−µ2(2−α2) + c1
c2

s−µ1(1−α1)

(
sα2 + c1

c2
sα1

) 1
2

∫ +∞

0

xγ exp

(
−
√
c2 |x|
c0

(
sα2 +

c1
c2
sα1

) 1
2

)
dx.

Taking into account the formula
∫ +∞
0

xb−1 e−ax dx = Γ (b) a−b, we have that

Lψ {Mγ (t)} (s) = cγ0 Γ (γ + 1)

c
γ
2
2

s1−µ2(2−α2) + c1
c2

s−µ1(1−α1)

(
sα2 + c1

c2
sα1

) γ
2 +1

. (78)

Inverting the ψ-Laplace transform, we obtain

Mγ (t) =
cγ0 Γ (γ + 1)

c
γ
2
2


L−1

ψ





s1−µ2(2−α2)

(
sα2 + c1

c2
sα1

) γ
2+1





(t) + L−1
ψ





s−µ1(1−α1)

(
sα2 + c1

c2
sα1

) γ
2 +1





(t)


 .
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Taking into account (23) we have

L−1
ψ





s1−µ2(2−α2)

(
sα2 + c1

c2
sα1

) γ
2 +1





(t) = L−1
ψ





s(α2−α1)( γ2 +1)−α2( γ2 +1)−µ2(2−α2)+1

(
sα2−α1 −

(
− c1
c2

)) γ
2 +1





(t)

= ψ (t)α2( γ2 +1)+µ2(2−α2)−2 E
γ
2 +1

α2−α1,α2( γ2 +1)+µ2(2−α2)−2

(
−c1
c2
ψ (t)α2−α1

)
(79)

and

L−1
ψ





c1
c2

s−µ1(1−α1)

(
sα2 + c1

c2
sα1

) γ
2 +1





(t) = L−1
ψ





c1
c2
s(α2−α1)( γ2 +1)−α2( γ2+1)−µ1(1−α1)

(
sα2−α1 −

(
− c1
c2

)) γ
2 +1





(t)

=
c1
c2
ψ (t)

α2( γ2 +1)+µ1(1−α1)−1
E
γ
2 +1

α2−α1,α2( γ2 +1)+µ1(1−α1)

(
−c1
c2
ψ (t)

α2−α1

)
.

(80)

Hence, we conclude that the moments of order γ of G1 are given in terms of three-parameter Mittag-Leffler

functions by

Mγ (t) =
cγ0 Γ (γ + 1)

c
γ
2
2

[
ψ (t)α2( γ2+1)+µ2(2−α2)−2 E

γ
2 +1

α2−α1,α2( γ2+1)+µ2(2−α2)−1

(
−c1
c2
ψ (t)α2−α1

)

+
c1
c2
ψ (t)α2( γ2 +1)+µ1(1−α1)−1 E

γ
2+1

α2−α1,α2( γ2 +1)+µ1(1−α1)

(
−c1
c2
ψ (t)α2−α1

)]
. (81)

From (11) we have the following asymptotic behaviour near the starting point t = a

Mγ (t) ∼ cγ0 Γ (γ + 1)

c
γ
2
2

ψ (t)
α2( γ2 +1)+µ2(2−α2)−2

, t→ a+,

and from (12) we have the following asymptotic behaviour at the infinity

Mγ (t) ∼ cγ0 Γ (γ + 1)

c
γ
2
2

ψ (t)
α1( γ2 +1)+µ1(1−α1)−1

, t→ +∞.

In particular when γ = 1 (mean) we have

M1 (t) ∼ c0√
c2
ψ (t)

3α2
2 +µ2(2−α2)−2

, t→ a+, M1 (t) ∼ c0√
c2
ψ (t)

3α1
2 +µ1(1−α1)−1

, t→ +∞,

and for γ = 2 (variance)

M2 (t) ∼ 2c0
c2

ψ (t)
2α2+µ2(2−α2)−2

, t→ a+, M2 (t) ∼ 2c0
c2

ψ (t)
2α1+µ1(1−α1)−1

, t→ +∞. (82)

The variance, also called the mean square displacement of a particle in a diffusion process, allows to recognize

the type of diffusion we are dealing with, by comparison with the variance in the normal diffusion process. From

(82), and comparing diffusion processes with the same ψ-function, we get the following inequalities in the short

and in the long time

ψ (t)
2α2+µ2(2−α2)−2

> ψ(t)2, t→ a+ and ψ (t)
2α1+µ1(1−α1)−1

< ψ(t), t→ +∞, (83)

for all α1 ∈]0, 1], α2 ∈]1, 2], µi ∈ [0, 1], i = 1, 2, and where the right-hand sides of (83) correspond to the limit

cases α2 = 2 and α1 = 1, respectively. Hence, we conclude that in this case, the process is superdiffusive in the

short time and subdiffusive in the long time, for the same function ψ.When comparing with the normal diffusion

process ψ(t) = t in the right-hand side of inequalities (83), both types of anomalous diffusion can appear in the

short and long times, depending on the choice of the function ψ in the left-hand side of inequalities (83), as we

can see in Figures 7 and 8.

20



In the following plots we show the asymptotic behaviour of the variance for small times in the cases ψ (t) = t2,

ψ (t) = t0.5, and ψ (t) = ln t, with α2 = 1.5 and different values of µ2. For the comparison we represent also the

normal diffusion that corresponds to the case ψ (t) = t and α2 = 2.
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Figure 7: Plots of M2 (t) for short time with α2 = 1.5, µ2 = 0.0, 0.4, 0.6, 1.0, and ψ (t) = t2, ψ (t) = t0.5, and

ψ (t) = ln t (from left).

From the previous plots we conclude that in the short time the process is subdiffusive for ψ (t) = t2 and

superdiffusive for ψ (t) = t0.5, when comparing with the normal diffusion process. For the case ψ (t) = ln t we

can observe that initially we have superdiffusion and the transition for subdiffusion occurs at different instants

in the interval. Now, we present the plots for the asymptotic behaviour of the variance near the infinity for

ψ (t) = t2, ψ (t) = t0.5, and ψ (t) = ln t, with α1 = 0.8 and different values of µ1.
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Figure 8: Plots of M2 (t) for long time with α1 = 0.5, µ1 = 0.0, 0.4, 0.6, 1.0, and ψ (t) = t2, ψ (t) = t0.5, and

ψ (t) = ln t (from left).

From the analysis of the plots in Figure 8 we conclude that in the long time the process is superdiffusive for

ψ (t) = t2 and subdiffusive for ψ (t) = t0.5 and ψ (t) = ln t, when comparing with the normal diffusion process.

We point out that for different values of the parameters α1, α2, µ1, µ2 the type of diffusion process may change.

5.2 The case of higher dimension

Here we consider the case when n ≥ 2. Because of the structure of (76), the use of formula (43) to invert the

Fourier transform of (76) leads to complicated expressions. Hence, we will not proceed as it was done for the

one dimensional case, but we consider an approach consisting in the reinterpretation of the moments in terms

of the Laplace transform (see e.g. [36]). First we compute the integer derivatives of order γ ∈ N of (76) with

respect to r at r = 0, yielding

Dγ
r

[
̂̃
G1ψ

]
(0, s) =





0, γ is odd

(−1)
γ
2 γ! cγ0

c
γ
2
2

s1−µ2(2−α2) + c1
c2

s−µ1(1−α1)

(
sα2 + c1

c2
sα1

) γ
2 +1

, γ is even
. (84)
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On the other hand, taking into account the definition of the Fourier transform for radial functions in Rn (see [39])

and due to the convergence of the improper integrals, we have

Dγ
r

[
̂̃
G1ψ

]
(0, s) = Dγ

r

[∫ +∞

0

e−sψ(t)
(2π)

n
2

r
n
2 −1

∫ +∞

0

G1 (w, t) Jn
2
−1 (wr) w

n
2 dw

︸ ︷︷ ︸
Ĝ1(r,t)

ψ′ (t) dt

]
(0, s)

=

∫ +∞

0

e−sψ(t)
∫ +∞

0

Dγ
r

[
(2π)

n
2

r
n
2 −1

Jn
2
−1 (wr) w

n
2

]

r=0

G1 (w, t) dwψ
′ (t) dt. (85)

Since

Dγ
r

[
(2π)

n
2

r
n
2 −1

Jn
2
−1 (wr) w

n
2

]

r=0

=





0, γ is odd

(−1)
γ
2 (γ − 1)!!π

n
2 wn+γ−1

2
γ
2 −1 Γ

(
γ+n
2

) , γ is even
,

then when γ is even (85) becomes

Dγ
r

[
̂̃
G1ψ

]
(0, s) =

(−1)
γ
2 (γ − 1)!!π

n
2

2
γ
2−1 Γ

(
γ+n
2

)
∫ +∞

0

e−sψ(t)
∫ +∞

0

wn+γ−1 G1 (w, t) dw ψ
′ (t) dt

=
(−1)

γ
2 (γ − 1)!!π

n
2

2
γ
2−1 Γ

(
γ+n
2

) Lψ
{
Mn+γ−1

}
(s) , (86)

where Mn+γ−1 is the moment of order n+ γ − 1 of G1. Moreover, from (86) and (84) we get

Lψ
{
Mn+γ−1

}
(s) =

γ!! 2
γ
2 −1 cγ0 Γ

(
γ+n
2

)

c
γ
2
2 π

n
2

s1−µ2(2−α2) + c1
c2

s−µ1(1−α1)

(
sα2 + c1

c2
sα1

) γ
2 +1

.

Inverting the ψ-Laplace transform, we have

Mn+γ−1 (t) =
γ!! 2

γ
2 −1 cγ0 Γ

(
γ+n
2

)

c
γ
2
2 π

n
2


L−1

ψ





s1−µ2(2−α2)

(
sα2 + c1

c2
sα1

) γ
2 +1





(t) + L−1
ψ





s−µ1(1−α1)

(
sα2 + c1

c2
sα1

) γ
2+1





(t)


 . (87)

Taking into account (79) and (80), we conclude that the moments of order n+ γ − 1 of G1 are given by

Mn+γ−1 (t) =
γ!! 2

γ
2−1 cγ0 Γ

(
γ+n
2

)

c
γ
2
2 π

n
2

×
[
ψ (t)

α2( γ2 +1)+µ2(2−α2)−2
E
γ
2+1

α2−α1,α2( γ2 +1)+µ2(2−α2)−1

(
−c1
c2
ψ (t)

α2−α1

)

+
c1
c2
ψ (t)α2( γ2 +1)+µ1(1−α1)−1 E

γ
2 +1

α2−α1,α2( γ2 +1)+µ1(1−α1)

(
−c1
c2
ψ (t)α2−α1

)]
, (88)

where γ is a nonnegative even integer. From (11) we have the following asymptotic behaviour of (88)

Mn+γ−1 (t) ∼ γ!! 2
γ
2 −1 cγ0 Γ

(
γ+n
2

)

c
γ
2
2 π

n
2 Γ
(
α2

(
γ
2 + 1

)
+ µ2 (2− α2)− 1

) ψ (t)
α2( γ2 +1)+µ2(2−α2)−2

, as t→ a+,

and from (12) we conclude that

Mn+γ−1 (t) ∼ γ!! 2
γ
2 −1 cγ0 Γ

(
γ+n
2

)

c
γ
2
2 π

n
2 Γ
(
α1

(
γ
2 + 1

)
+ µ1 (1− α1)

) ψ (t)
α1( γ2 +1)+µ1(1−α1)−1

, as t→ +∞.

We remark that this approach does not give all the moments for any dimension. For example, assuming n = 2

in (88) we can only compute the moments of odd order, because γ is even from (84). To obtain the moments

of even order a different approach must be developed.
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6 The one dimensional case and its probabilistic interpretation

In this section we prove that the first fundamental solution G1 introduced in Section 5 with n = 1 can be

interpreted as a true probability density function, for some particular choices of the parameters µ1 and µ2.

These conditions show us to what extent it is possible to generalize the results presented in [36].

Theorem 6.1 For n = 1, the first fundamental solution G1 of the generalized time-fractional telegraph equation

(35) corresponds to a true probability density function for all 0 < α1 < 1 and 1 ≤ α2 < 2 if and only if

µ1 = µ2 = 1, i.e., when we deal with ψ-Caputo fractional derivatives.

Proof: The first fundamental solution G1 can only be considered as a probability density function if and only

if Ĝ1 (0, t) = 1 and G1 (x, t) is nonnegative for all (x, t) ∈ R × I, with I = [a, b] being a finite or an infinite

interval on R+ (see assumptions and conditions assumed in (35)-(37)). Let us start with the first property.

Taking into account that Eβ3

β1,β2
(0) = 1

Γ(β) , we have from (39) that

1 = Ĝ1 (0, t)

=

+∞∑

p=0

(
−c1
c2
ψ (t)

α2−α1

)p [
c1
c2
ψ (t)

α2−1+µ1(1−α1) Ep+1
α2,α2+(α2−α1)p+µ1(1−α1)

(0)

+ ψ (t)α2−2+µ2(2−α2) Ep+1
α2,α2+(α2−α1)p−1+µ2(2−α2)

(0)

]

=

+∞∑

p=0

(
−c1
c2
ψ (t)

α2−α1

)p [
c1
c2
ψ (t)

α2−1+µ1(1−α1) 1

Γ ((α2 − α1) p+ α2 + µ1 (1− α1))

+ ψ (t)
α2−2+µ2(2−α2) 1

Γ ((α2 − α1) p+ α2 − 1 + µ2 (2− α2))

]

= −ψ (t)
−(1−µ1)(1−α1)

+∞∑

p=0

(
−c1
c2
ψ (t)

α2−α1

)p+1
1

Γ ((α2 − α1) p+ α2 + µ1 (1− α1))

+ ψ (t)−(1−µ2)(2−α2)
+∞∑

p=0

(
−c1
c2
ψ (t)α2−α1

)p
1

Γ ((α2 − α1) p+ α2 − 1 + µ2 (2− α2))

= −ψ (t)−(1−µ1)(1−α1)
+∞∑

q=1

(
−c1
c2
ψ (t)α2−α1

)q
1

Γ ((α2 − α1) q + µ1 (1− α1) + α1)

+ ψ (t)
−(1−µ2)(2−α2) 1

Γ (α2 − 1 + µ2 (2− α2))

+ ψ (t)
−(1−µ2)(2−α2)

+∞∑

p=1

(
−c1
c2
ψ (t)

α2−α1

)p
1

Γ ((α2 − α1) p+ α2 − 1 + µ2 (2− α2))
. (89)

For all 0 < α1 < 1 and 1 < α2 < 2, the two series in (89) cancel if and only if µ1 = µ2 = 1. In these conditions

we immediately get that Ĝ1 (0, t) = 1, for all t ∈ I. From now on, we assume that µ1 = µ2 = 1. Let’s now see in

which conditions G1 (x, t) is a nonnegative function for all x ∈ R and t ∈ I. Following the ideas presented in [36]

we analyse the ψ-Laplace transform of Ĝ1 (κ, t) with respect to the time-variable t. Considering µ1 = µ2 = 1

in (77) we have

Lψ {G1 (x, t)} (x, s) =
√
c2

2c0s

(
sα2 +

c1
c2

sα1

) 1
2

exp

(
−
√
c2 |x|
c0

(
sα2 +

c1
c2
sα1

) 1
2

)
. (90)

The ψ-Laplace transform (90) can be further inverted in a simple way when c1 = 0 (which corresponds to

the case of the generalized time-fractional wave equation with ψ-Caputo derivative). For a random variable

X ∼ Sα (τ, 1, 0), also called a stable distribution with index α, scale parameter τ , and without skewness and
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shiftness (see [40]), the expected value of e−γX is given by

E
[
e−sX

]
= exp

(
− τα

cos
(
απ
2

) sα
)
, 0 < α ≤ 2, α 6= 1, τ, s ∈ R

+, (91)

which is the same as the Laplace transform of X (see [40, Prop. 1.2.12]). Hence for c1 = 0, the expression (90)

can be written as

Lψ {G1 (x, t)} (x, s) =
√
c2

2c0
s
α2
2 −1E

[
e−sX

]
, (92)

where

X ∼ Sα2
2

(√
c2 |x|
c0

cos
(α2π

4

)
, 1, 0

)
, 1 < α2 ≤ 2. (93)

Denoting by p (|x|, t) the probability density function of X we can invert the ψ-Laplace transform in (92), via

the Convolution Theorem present in (20), as follows

G1 (x, t) =

√
c2

2c0

ψ (t)
α2
2

Γ
(
1− α2

2

) ∗ψ p (|x|, ψ (t)) , (94)

where, by (17), holds

L−1
ψ

{
exp

(
−
√
c2 |x|
c0

s
α2
2

)}
(t) = p (|x|, ψ (t)) , (95)

and by (21)

L−1
ψ

{
s
α2
2 −1

}
(t) =

ψ (t)
α2
2

Γ
(
1− α2

2

) . (96)

Hence, from (95) and (96), and the definition of the ψ-convolution presented in (19), we conclude that G1 (x, t)

is a nonnegative function for all 1 < α2 < 2. For the limit case of α2 = 1 we have, by (22) that

L−1
ψ

{
exp

(
−
√
c2 |x|
c0

s
1
2

)}
(t) =

√
c2 |x|

2c0
√
π
ψ (t)−

3
2 exp

(
− c2 |x|
4c20 ψ (t)

)
. (97)

Moreover, since

L−1
ψ

{
s−

1
2

}
(t) =

1√
π ψ (t)

(98)

we get

G1 (x, t) =

√
c2

2c0

1√
π ψ (t)

∗ψ
√
c2 |x|

2c0
√
π
ψ (t)

− 3
2 exp

(
− c2 |x|
4c20 ψ (t)

)
. (99)

Since ψ is a nonnegative function we can also guarantee that G1 (x, t) is a nonnegative function for α2 = 1. Let

us now study the case where c1 6= 0. Taking into account the following identity

2

a2 + x2
=

∫ +∞

0

1

w2
exp

(
− a2

2w

)
exp

(
− x2

2w

)
dw, (100)

we have that (76), with µ1 = µ2 = 1, can be written as

Lψ
{
Ĝ1 (κ, t)

}
(κ, s) =

c2
2c20

(
sα2−1 +

c1
c2

sα1−1

)
2

c2
c20

(
sα2 + c1

c2
sα1

)
+ κ2

=
c2
2c20

(
sα2−1 +

c1
c2

sα1−1

) ∫ +∞

0

1

w2
exp

(
− κ2

2w

)
exp

(
−c2s

α2

2c20 w

)
exp

(
−c1s

α1

2c20w

)
dw.

(101)
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Now, we analyse each term in (101), by making an interpretation via convolution with known density functions.

From (91) we have that

exp

(
−c2s

α2

2c20w

)
= E

[
e−sX2

]
, where X2 ∼ Sα2

(√
c2 |x|
c0

cos
(α2π

2

)
, 1, 0

)
, 1 < α2 < 2, (102)

exp

(
−c2s

α1

2c20w

)
= E

[
e−sX1

]
, where X1 ∼ Sα1

(√
c2 |x|
c0

cos
(α1π

2

)
, 1, 0

)
, 0 < α1 < 1. (103)

The probability density functions connected with (102) and (103) will be denoted by qα2 (w, t) and qα1 (w, t),

respectively, and satisfy

L−1
ψ

{
exp

(
− c2
2c20w

sα2

)}
(t) = qα2 (w,ψ (t)) and L−1

ψ

{
exp

(
− c2
2c20w

sα1

)}
(t) = qα1 (w,ψ (t)) . (104)

Now, since

L−1
ψ

{
sα2−1

}
(t) =

ψ (t)
−α2

Γ (1− 2α1)

is only valid for α2 < 1, which does not happen in our case, we can only perform the inversion directly for the

second term of (101). Hence, since

L−1
ψ

{
sα1−1

}
(t) =

ψ (t)
−α1

Γ (1− α1)
, α1 < 1 (105)

and

F−1

{
1

w2
exp

(
− κ2

2w

)}
(x) = w− 3

2 exp

(
−wx

2

2

)
, (106)

by (20) and (26), we have for this term

c1
2c20

sα1−1

∫ +∞

0

1

w2
exp

(
− κ2

2w

)
exp

(
−c2s

α2

2c20 w

)
exp

(
−c1s

α1

2c20 w

)
dw

=
c1
2c20

∫ +∞

0

w− 3
2 exp

(
−wx

2

2

)
ψ (t)−α1

Γ (1− α1)
∗ψ [qα2 (w,ψ (t)) ∗ψ qα1 (w,ψ (t))] dw. (107)

The second member in (107) corresponds to a combination of ψ-convolutions involving the probability density

functions qα2 and qα1 , which are nonnegative functions by definition, and the power function ψ (t)
−α1 , which

is also a nonnegative function. Hence, for 0 < α1 < 1, we can ensure that expression (107) corresponds to a

nonnegative function. Let us analyse the first term in (101). By the mean-value theorem and (100), we have

c2
2c20

sα2−1

∫ +∞

0

1

w2
exp

(
− x2

2w

)
exp

(
−c2s

α2

2c20 w

)
exp

(
−c1s

α1

2c20 w

)
dw

= exp

(
−c1s

α1

2c20w

)[
c2
2c20

sα2−1

∫ +∞

0

1

w2
exp

(
− κ2

2w

)
exp

(
−c2s

α2

2c20 w

)
dw

]

= exp

(
−c1s

α1

2c20w

)
sα2−1

sα2 +
c20
c2
κ2
, (108)

for some w ∈ ]0,+∞[ and 1 ≤ α2 < 2. While the first factor in (108) corresponds via (103) to a stable

distribution of order α1, the second factor represents the ψ-Laplace Fourier transform of the solution of the

generalized time-fractional wave equation with ψ-Hilfer derivative of Caputo type, which we already prove to

be a nonnegative function by means of the representation (76) with µ1 = µ2 = 0 and c1 = 0. Hence, we finally

conclude that the first fundamental solution of (35) can be considered as a probability density function for all

0 < α1 < 1 and 1 ≤ α2 < 2 if and only if µ1 = µ2 = 1.

�

Corollary 6.2 For n = 1 and c1 = 0, the first fundamental solution G1 of the generalized time-fractional wave

equation corresponds to a true probability density function for all 1 ≤ α2 < 2 if and only if µ2 = 1.
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Let us analyse the limit cases of α1 = 1 and α2 = 2 and investigate the connections with the telegraph process.

Denoting by Xα2,α1 = Xα2,α1 (ψ (t)) the process whose distribution at ψ coincide with G1, the limit cases of

α1 = 1 and α2 = 2 are related to the classical telegraph process, which is defined using the function ψ as

T (ψ (t)) = V (a)

∫ ψ(t)

a

(−1)
N(s)

ds,

where V (a) is a two vector-valued random variable (with values ±c0 taken with probability 1
2 ) and N (ψ (t)) is

the number of events in [a, ψ (t)] of a homogeneous Poisson process, independent of V (a) (cf. [36]).

6.1 The case of the law process with Brownian time

We consider here the particular case when n = 1, α1 = 1
2 , α2 = 1, and µ1 = µ2 = 1, which allows to obtain

an interpretation of the fundamental solution in terms of the telegraph process and the Brownian motion. We

consider the equation

c2
H∂1,1;ψ

t,a+
u (x, t) + c1

H∂
1
2 ,1;ψ

t,a+
u (x, t)− c20 ∂

2
xu (x, t) = 0 (109)

subject to (63), where the time-fractional derivatives coincide with Caputo fractional derivatives. From (41) we

obtain the following expression for Ĝ1:

Ĝ1 (κ, t) =
c1
c2
ψ (t)

1
2 E( 1

2 ,1),
3
2

(
−c1
c2
ψ (t)

1
2 ,−c

2
0 |κ|2
c2

ψ (t)

)
+ E( 1

2 ,1),1

(
−c1
c2
ψ (t)

1
2 ,−c

2
0 |κ|2
c2

ψ (t)

)

and for G1 (see Theorem 3.3):

G1 (x, t) =
c1ψ (t)

1
2

c2
√
π |x|H

0,1;0,1;1,0
1,1;1,0;0,1




4c20 ψ (t)

c2 |x|2

c1
c2
ψ (t)

1
2

(0; 1, 1) ;

(
1

2
, 1

)
; −−

(
−1

2
; 1,

1

2

)
; −−; (0, 1)




+
1√
π |x|H

0,1;0,1;1,0
1,1;1,0;0,1




4c20 ψ (t)

c2 |x|2
c1
c2
ψ (t)

1
2

(0; 1, 1) ;

(
1

2
, 1

)
; −−

(
0; 1,

1

2

)
; −−; (0, 1)


 . (110)

Moreover, the double series representation associated to the previous expression is (see (75) with µ1 = µ2 = 1,

α1 = 1
2 and α2 = 1):

G1 (x, t) =
c1

2c0
√
c2

+∞∑

p=0

+∞∑

r=0

(
1−r
2

)
p

Γ
(
1 + p−r

2

)
p! r!

(
−c1
c2
ψ (t)

1
2

)p(
−

√
c2 |x|

c0ψ (t)
1
2

)r

+
ψ (t)

− 1
2

2c0
√
c2

+∞∑

p=0

+∞∑

r=0

(
1−r
2

)
p

Γ
(
1
2 + p−r

2

)
p! r!

(
−c1
c2
ψ (t)

1
2

)p(
−

√
c2 |x|

c0ψ (t)
1
2

)r
.

The probability density function given by (110) corresponds to the composition of the telegraph process

T = T (t), where t ∈ I, with a reflecting Brownian motion |B| = |B (ψ (t))|, with t ∈ I (independent of

T ). This means that the probability law given by (110) coincides with the distribution of the telegraph process

with a Brownian process with nonlinear time varying, i.e., W (t) = T (|B (ψ (t))|), t ∈ I. The process W can be

understood as the random motion of a particle moving with alternating velocities ±c0 (changing Poisson times)

during an interval of length 2c0 |B (ψ (t))|. In other words, the particle is located at time t in the random space

interval (−c0 |B (ψ (t))|, c0 |B (ψ (t))|). This shows that the distribution related to the equation (109) covers the

whole real line and differs from the classical telegraph process, where the distribution is concentrated on a finite

interval (spreading as time passes) because of the finite velocity of motion. The case when ψ (t) = t was already

studied in [36].
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6.2 Graphical representation of the probability density function

In this section we present and discuss some plots of the probability density function G1 for some values of

the fractional parameters α1 and α2, and particular choices of the function ψ. Hence, considering n = 1 and

µ1 = µ2 = 1 in (75), we have the following double series representation of G1:

G1 (x, t)

=
c1 ψ (t)

α2
2 −α1

2c0
√
c2

+∞∑

p=0

+∞∑

r=0

(
1−r
2

)
p

Γ
(
1 + α2

2 − α1 + (α2 − α1) p− α2r
2

)
p! r!

(
−c1
c2
ψ (t)

α2−α1

)p(
−

√
c2 |x|

c0 ψ (t)
α2
2

)r

+

√
c2 ψ (t)−

α2
2

2c0

+∞∑

p=0

+∞∑

r=0

(
1−r
2

)
p

Γ
(
1− α2

2 + (α2 − α1) p− α2r
2

)
p! r!

(
−c1
c2
ψ (t)

α2−α1

)p(
−

√
c2 |x|

c0 ψ (t)
α2
2

)r
. (111)

The two double series that appear in (111) can be combined into a single one. In fact, since

G1 (x, t)

=
c1

2c0
√
c2
ψ (t)

α2
2 −α1

+∞∑

p=0

+∞∑

r=0

(
1−r
2

)
p

Γ
(
1 + α2

2 − α1 + (α2 − α1) p− α2r
2

)
p! r!

(
−c1
c2
ψ (t)

α2−α1

)p(
−

√
c2 |x|

c0 ψ (t)
α2
2

)r

+

√
c2

2c0
ψ (t)

−α2
2

+∞∑

p=−1

+∞∑

r=0

(
1−r
2

)
p

(
1−r
2 + p

)

Γ
(
1 + α2

2 − α1 + (α2 − α1) p− α2r
2

)
(p+ 1)! r!

(
−c1
c2
ψ (t)

α2−α1

)p+1
(
−

√
c2 |x|

c0 ψ (t)
α2
2

)r
,

(112)

then splitting the second double series into two double series in a convenient way, one of the resulting double

series will cancel with the first double series. Hence, we finally obtain

G1 (x, t) =

√
c2

2c0
ψ (t)

−α2
2

+∞∑

p=0

+∞∑

r=0

(
1−r
2

)
p−1

(−1−r
2

)

Γ
(
1 + α2

2 − α1 + (α2 − α1) p− α2r
2

)
p! r!

(
−c1
c2
ψ (t)

α2−α1

)p(
−

√
c2 |x|

c0 ψ (t)
α2
2

)r
.

(113)

Expression (113) is more practical under a numerical point of view and it could also be used to obtain the

graphical representations presented in Section 4.1.2.

Remark 6.3 We observe that if we consider in (113) c1 = 0, and ψ (t) = t with t ∈ R+, we obtain the series

representation of the first fundamental solution for the time-fractional wave equation with Caputo derivative

deduced in [19] (see expression (50) with n = 1).

In the following subsections we will consider c0 = c1 = c2 = 1 in (113).

6.2.1 Caputo fractional derivative

The first case we present corresponds to ψ (t) = t, with t ∈ R+. In the following plots we present a graphical

representation of G1 (x, t) (see expression (111)) for α2 = 1.25, 1.50, 1.75, α1 = 0.25, 0.50, 0.75, and different

values of t.
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Figure 9: Plots of G1 (x, t) for ψ (t) = t, α2 = 1.25 and α1 = 0.25, 0.50, 0.75 (from left).
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Figure 10: Plots of G1 (x, t) for ψ (t) = t, α2 = 1.50 and α1 = 0.25, 0.50, 0.75 (from left).
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Figure 11: Plots of G1 (x, t) for ψ (t) = t, α2 = 1.75 and α1 = 0.25, 0.50, 0.75 (from left).

The plots show that G1 is a nonnegative even function and corresponds to a fast perturbed wave phenomena

due to the parameter α1. In fact, these plots are deformations of those presented in Section 7.1 of [19], and

they are also in agreement with those presented in [18, Sec. 6.1]. We can observe that with the increasing of

time the behaviour of the fundamental solution changes in the origin and the decay becomes slower. Moreover,

as α1 increases the shape of the curve changes and the decay becomes slower. When α2 increases the wave

phenomena increases and the two symmetric maxima that appear move apart from the origin. Finally, it is

clear from (113) that the there is a discontinuity of the first derivative at x = 0.

6.2.2 Caputo-Katugampola fractional derivative

Here we consider ψ (t) = tρ, with ρ ∈ R+, and t ∈ R+, which corresponds to the case when the time-fractional

derivatives in (35) are in the Caputo-Katugampola sense and of orders α1 and α2 (see Table 1). In the following

plots we present a graphical representation of G1 (x, t) for ψ (t) = t2 and ψ (t) = t
1
2 , α1 = 0.25, 0.50, 0.75,

α2 = 1.25, 1.50, 1.75, and different values of t.
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Figure 12: Plots of G1 (x, t) for ψ (t) = t2, α1 = 0.25 and α2 = 1.25, α1 = 0.50 and α2 = 1.50, and α1 = 0.75

and α2 = 1.75 (from left).
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Figure 13: Plots of G1 (x, t) for ψ (t) = t
1
2 , α1 = 0.25 and α2 = 1.25, α1 = 0.50 and α2 = 1.50, and α1 = 0.75

and α2 = 1.75 (from left).

From the plots, we see that the behaviour of the fundamental solutions turns to be similar the one observed

in Figures 9, 10, and 11 for the first, second, and third plots, respectively, however due to the nonlinearity of

the functions ψ chosen there are differences in the behaviour of the fundamental solutions.

6.2.3 Caputo-Hadamard fractional derivative

Let us consider ψ (t) = ln t, and t ∈ ]1,+∞[, which corresponds to the case when the time-fractional derivatives

in (35) are in the Caputo-Hadamard sense and of orders α1 and α2 (see Table 1). We present a graphi-

cal representation of G1 (x, t) for ψ (t) = ln t (see expression (111)) for x ∈ [−5, 5], α1 = 0.25, 0.50, 0.75,

α2 = 1.25, 1.50, 1.75, and different values of t.
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Figure 14: Plots of G1 (x, t) for ψ (t) = ln t, α1 = 0.25 and α2 = 1.25, α1 = 0.50 and α2 = 1.50, and α1 = 0.75

and α2 = 1.75 (from left).

Despite of the different range of the time variable t ∈ ]1,+∞[, the behaviour of the fundamental solutions

is similar to the one observed in Figures 9, 10, and 11. The difference in the range of the plots is due to the

slower time varying induced by the function ψ (t) = ln t.

6.3 Caputo-Exponential type fractional derivative

In this subsection, we consider ψ (t) = tet, with t ∈ R+, which corresponds to the case when the time-

fractional derivative in (35) are in the ψ-Caputo sense and of orders α1 and α2 (see Table 1). In the following

plots we present a graphical representation of G1 (x, t) (see expression (111)) for ψ (t) = tet, x ∈ [−5, 5],

α1 = 0.25, 0.50, 0.75, α2 = 1.25, 1.50, 1.75, and different values of t.
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Figure 15: Plots of G1 (x, t) for ψ (t) = tet, α1 = 0.25 and α2 = 1.25, α1 = 0.50 and α2 = 1.50, and α1 = 0.75

and α2 = 1.75 (from left).
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We see that the behaviour of the fundamental solutions is similar to the one observed in Figures 9, 10, and

11, but in this case the time is varying faster than in the other cases. This explains the differences between

these plots and the plots presented previously.

7 Particular cases

In this section we present some particular cases of the previous results in order to show the consistency of our

work.

7.1 Time-fractional telegraph equation with Caputo fractional derivatives

If we consider in (35)-(37), ψ (t) = t with t ∈ R+, and

c2 = 1, d = 0, q (x, t) = 0, µ1 = µ2 = 1, f (x) = g1 (x) = g2 (x) = δ (x) =

n∏

i=1

δ (xi) , (114)

our initial value problem reduces to




(
C∂α2

0+,t + c1
C∂α1

0+,t − c20 ∆x

)
u (x, t) = 0

u (x, 0) = δ (x)

∂u

∂t
(x, 0) = δ (x)

, (115)

where the time-fractional derivatives are in the Caputo sense. This problem was already studied in [16]. In

these conditions, the solution of (115) corresponds in the Fourier domain, via expression (40), to

û (κ, t) = c1t
α2−α1E(α2−α1,α2),1+α2−α1

(
−c1 tα2−α1 ,−c20 |κ|2tα2

)
+ E(α2−α1,α2),1

(
−c1 tα2−α1 ,−c20 |κ|2tα2

)

+ t E(α2−α1,α2),2

(
−c1 tα2−α1 ,−c20 |κ|2tα2

)
,

which agrees with expression (3.3) in [16]. Furthermore, the representations of the solution in terms of Fox

H-functions of two variables and double series coincide with the correspondent ones presented in [16, 18].

7.2 Time-fractional neutral telegraph equation

The Cauchy problem associated to the time-fractional neutral telegraph equation with Caputo fractional deriva-

tives is obtained from (115) by considering n = 1, α2 = 2α and α1 = α, with 1
2 < α ≤ 1, and the second initial

condition is replaced by ∂u
∂t

(x, 0) = 0. This problem was already studied in [36] and is a particular case of the

work we present here. In this case, we have the following representation of u (x, t), in the Fourier domain, in

terms of bivariate Mittag-Leffler functions

û (κ, t) = c1 t
αE(α,2α),α+1

(
−c1 tα,−c20 |κ|2t2α

)
+ E(α,2α),1

(
−c1 tα,−c20 |κ|2t2α

)
. (116)

An equivalent representation in terms of one parameter Mittag-Leffler functions is presented in Theorem 2.1

of [36], however, expression (116) is simpler from our point of view. Moreover, we have the following double

series representation of the solution

u (x, t) =
c1
2c0

+∞∑

p=0

+∞∑

r=0

(
1−r
2

)
p
(−c1tα)p

Γ (1 + α (p− r)) p! r!

(
− |x|
c0tα

)r
+

1

2c0tα

+∞∑

p=0

+∞∑

r=0

(
1−r
2

)
p
(−c1tα)p

Γ (1− α+ α (p− r)) p! r!

(
− |x|
c0tα

)r
,

which complements the results presented in [36] because the representation of the solution in the space-time

domain was not given there. Making use of (10) we have from (81), with α2 = 2α, α1 = α, and c2 = µ1 = µ2 = 1,

the following general expression for the moments of arbitrary order γ > 0 of G1

Mγ (t) = cγ0 Γ (γ + 1) tαγ E
γ
2
α,αγ+1 (−c1 tα) . (117)

This formula generalizes the one presented in [36] for an arbitrary order γ > 0. For the particular case of γ = 2,

we have the following expression for the variance

M2 (t) = 2c20 t
2αEα,2α+1 (−c1 tα) , (118)

which coincides with expression (5.3) in [36].
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8 Conclusions

The telegraph equation containing fractional derivatives in time and/or in space is usually adopted to describe

anomalous diffusive phenomena. In this work, we focused on the time-fractional telegraph equation in Rn×R+

where the time-fractional derivatives are the ψ-Hilfer derivatives of orders α1 ∈]0, 1] and α2 ∈]1, 2], and types

µ1, µ2 ∈ [0, 1]. The ψ-Hilfer derivative englobes several fractional derivatives proposed in the literature for

particular choices of the function ψ and the type of derivative µ. In view of this, several particular cases can

be obtained from our results.

Using integral transform techniques we were able to express the solution of the Cauchy problem associated

with the time-fractional telegraph equation in closed form in terms of bivariate Mittag-Leffler functions in the

Fourier domain and in terms of convolution integrals involving Fox H-functions of two-variables in the space-

time domain. In the one-dimensional case, we made a detailed study of the first fundamental solution and

we showed that it corresponds to a probability density function when the TFTE contains ψ-Caputo fractional

derivatives of arbitrary orders α1 ∈]0, 1] and α2 ∈]1, 2].
Besides the case of the time-fractional telegraph equation with two-fractional derivatives, it could be also

interesting to study the case of diffusive equations with multi-term or distributive-order time-fractional ψ-Hilfer

derivatives.

A Appendix

This appendix presents a short overview of Horn’s technique to study the convergence of double power series.

For more details we refer the interested reader to [44] and [14] (pp. 223–229). Let the two positive quantities

R1 and R2 be called the associated radii of convergence of the double power series

+∞∑

p=0

+∞∑

q=0

Ap,q z
p
1 z

q
2 , (119)

such that it converges absolutely for |z1| < R1, |z2| < R2, and diverges when |z1| > R1, |z2| > R2. In the

(r1, r2)-system of coordinates, the points representing the associated radii of convergence would lie on a certain

curve ξ which, in turn, lies entirely within the rectangle 0 < r1 < R1, 0 < r2 < R2. The region between the

curve ξ and the part of the rectangle containing r1 = r2 = 0 is the two-dimensional representation of the domain

of convergence of the double power series. If we let

u1 (ν1, ν2) = lim
t→+∞

f1 (tν1, tν2) , u2 (ν1, ν2) = lim
t→+∞

f2 (tν1, tν2) , (120)

where

f1 (p, q) =
Ap+1,q

Ap,q
, f2 (p, q) =

Ap,q+1

Ap,q
, (121)

are rational functions of p and q satisfying the functional equation

f1 (p, q) f2 (p+ 1, q) = f1 (p, q + 1) f2 (p, q) ; p, q = 0, 1, 2, . . .

then we have that R1 = |u1 (1, 0)|−1, R2 = |u2 (1, 0)|−1, and ξ has the parametric representation

r1 = |u1 (ν1, ν2)|−1, r2 = |u2 (ν1, ν2)|−1, (122)

where µ1, µ2 > 0. From (120) there are three cases worthy of note:

• Case I. If u1 (ν1, ν2) = u2 (ν1, ν2) = 0 then the radii of convergence R1 and R2, given by (122), are

infinitely large. Hence the double power series (119) converges absolutely for all complex z1 and z2.

• Case II. If u1 (ν1, ν2) = 1/ρ1 and u2 (ν1, ν2) = 1/ρ2, with ρ1, ρ2 > 0, then from (122) we have that

R1 = ρ1 and R2 = ρ2. Therefore, (119) converges absolutely for all complex z1 and z2 such that |z1|< ρ1
and |z2|< ρ2.

• Case III. If u1 and u2 become infinitely large as t → +∞, then R1 = R2 = 0, which shows that the

double power series would diverge except when z1 = z2 = 0.
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Taking into account this technique it is possible to prove the following auxiliary lemma.

Lemma A.1 Let a1, a2, a3, a4, b1, b2, b3,m be reals numbers such that a2, a4 6= 0, b2 > 0, b3 > −1, and m ≥ 0.

Then the following double power series

+∞∑

p=0

+∞∑

q=0

(a1 + a2q)p
(a3 + a4q)m Γ (b1 + b2p+ b3q) p! q!

zp1 z
q
2 , (123)

is absolutely convergent for all complex z1 and z2.

Proof: Let us determine the functions f1 and f2 in (120), which are given by (121). From (123) and taking

into account the definition of the Pochhammer symbol, we have that

f1 (tν1, tν2) =
Ap+1,q

Ap,q

∣∣∣∣∣
p=tν1,q=tν2

=
Γ (a1 + a2q + p+ 1)

Γ (a1 + a2q + p)

Γ (b1 + b2p+ b3q)

Γ (b1 + b2p+ b3q + b2)

1

p+ 1

∣∣∣∣∣
p=tν1,q=tν2

∼ (a1 + a2q + p) (b1 + b2p+ b3q)
−b2 1

p+ 1

∣∣∣∣∣
p=tν1,q=tν2

where we use the asymptotic formula Γ (x+ α) /Γ (x+ β) ∼ xα−β when x → +∞ for α, β ∈ R (see Formula

(1.4) in [44]). When p→ +∞ we have that

f1 (tν1, tν2) ∼ p (b1 + b2p+ b3q)
−b2 1

p

∣∣∣∣∣
p=tν1,q=tν2

= (b2ν1 + b3ν2)
−b2 t−b2 , (124)

which implies by (120) that

u1 (ν1, ν2) = lim
t→+∞

f1 (tν1, tν2) = 0, (125)

since b2 > 0. Proceeding in a similar way for the function f2, we get

f2 (tν1, tν2) ∼ (ν1 + a2ν2)
a2 (a2ν2)

−a2 (b2ν1 + b3ν2)
−b3 t−b3−1, (126)

and, hence,

u2 (ν1, ν2) = lim
t→+∞

f2 (tν1, tν2) = 0, (127)

since b3 > −1. From (125) and (127) we conclude that the radii of convergence R1 and R2, given by (122), are

infinitely large, and therefore the double power series (123) converges absolutely for all complex z1 and z2.

�

Taking into account the definition of the Pochhammer symbol we can rewrite the double power series (123) as

follows

Γ (a3)

Γ (a3 +m) Γ (b1)

+∞∑

p=0

+∞∑

q=0

(a1)p+a2q (a3)a4q
(b1)b2p+b3q (a1)a2q

zp1
p!

zq2
q!
,

where all the parameters are such that the gamma functions and the Pochhammer symbols are well-defined. In

these cases, the previous double power series corresponds to the following generalised Lauricella series (see [43])

Γ (a3)

Γ (a3 +m) Γ (b1)
F 1:0;1
1:0;1




[a1 : 1, a2] : −; [a3 : a4]

[b1 : b2, b3] : −; [a1 : a2]

z1, z2


 , (128)

where not all coefficients are positive as it is considered in [43].
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