
3D Deformations by means of Monogenic Functions†

J. Morais
‡

Technical University of Mining,
Freiberg, Germany

Email: joao.pedro.morais@ua.pt

M. Ferreira

School of Technology and Management,
Polytechnic Institute of Leiria, Portugal

2411-901 Leiria, Portugal.
Email: milton.ferreira@ipleiria.pt

and
CIDMA - Center for Research and Development

in Mathematics and Applications,
University of Aveiro, 3810-193 Aveiro, Portugal.

Email: mferreira@ua.pt

Abstract

In this paper the authors compute the coe�cient of quasiconformality for monogenic functions
in an arbitrary ball of the Euclidean space R3. This quanti�cation may be needed in applications
but also appear to be of intrinsic interest. The main tool used is a 3D Fourier series development of
monogenic functions in terms of a special set of solid spherical monogenics. Ultimately, we present
some examples showing the applicability of our approach.
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1 Introduction

By a classical theorem of Liouville [28], the usual de�nition of conformal mappings in the n-dimensional
Euclidean space Rn when n ≥ 3 applies only to the restricted set of Möbius transformations. For
this reason, the theory of conformal mappings is essentially restricted to 2D settings. Actually, for
quasiconformal mappings the situation is quite di�erent; there exist several possible ways to give an
in�nitesimal notion of quasiconformality. In order to explain our standing position, let us consider a
homeomorphism f of a domain D ⊂ Rn onto a domain D′ ⊂ Rn. For x ∈ D, r > 0 and a 3D closed
ball B(x, r) ⊂ D of center x and radius r, we set

Lf (x, r) := max
|x−y|=r

|f(y)− f(x)|, lf (x, r) := min
|x−y|=r

|f(y)− f(x)|, kf (x, r) =
Lf (x, r)

lf (x, r)
.

The coe�cient of quasiconformality (or linear dilatation) of f at x ∈ D is de�ned as kf (x) = lim supr→0 kf (x, r).
For our purposes here, the orientation preserving homeomorphism f : D → D′

is called k-quasiconformal
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in D′
if kf (x) is bounded in D and kf (x) ≤ k for almost all points x ∈ D. Then a mapping is called qua-

siconformal if it is k-quasiconformal for some k (1 ≤ k < ∞). The distortion theory of quasiconformal
mappings is usually connected to problems of obtaining global distortion bounds under quasiconformal
deformations from the local bounds of kf . The major sources of the theory of quasiconformal map-
pings in the plane are found in the works of Grötzsch [14], Lavrent'ev [25], Ahlfors [1], and Teichmüller
[41]. In the meantime, quasiconformal mappings became a classical object of analysis due to its rich
behavior and wide range of applicability in various �elds of mathematics such as discrete group theory,
mathematical physics, complex di�erential geometry, medical image analysis, and probability theory.
Higher dimensional quasiconformal mappings were �rst introduced by Lavrent'ev in 1938 [26], followed
over a period of several years by a series of famous works: Ahlfors [2], Gehring [13], and Väisälä [42, 43].
The reader can consult the book of Rickman [37] for a more recent treatment of the subject.

In general, the study of quasiconformal mappings is important for the construction of analytic map-
pings with speci�ed dynamics, which can be used as coordinate transformations in various problems,
e.g. in the study of partial di�erential equations [7]. The dilatation of quasiconformal mappings con-
trols the way conformal invariants, such as moduli of annuli, can be changed. Especially, in the theory
of renormalizations, we can measure how distant a map is from another one in terms of dilatations
of conjugacies. For that it is essential to have an estimate for the dilatation of the quasiconformal
mapping. For such applications in higher dimensions the study of the quasiconformality factor is fun-
damental. Recent statistical studies have shown that quasi-conformal mappings can also be useful
for approximate recovery of the boundary shape of domains in inverse problems, e.g. in scattering,
di�raction problems and tomography [20, 21, 22, 23].

The discussion about the extension of theoretical and practical quasiconformal mapping techniques
in the quaternion analysis setting, has originated many questions. Yet a large number of investigations
[12, 15, 24, 29, 40] were carried out in connection with the goal of studying monogenic functions by a
corresponding di�erentiability concept or by the existence of a well-de�ned hypercomplex derivative.
However, up to now there are feeble attempts to characterize monogenic functions via a generalized
conformality concept. It was Malonek who �rst introduced the concept of monogenic conformal map-
pings [30]. These mappings are called in [30] M-conformal mappings. The relation of this concept
with the geometric interpretation of the hypercomplex derivative 1

2D allowed it to complete the theory
of monogenic functions by providing an accounting for the still missing geometric characterization of
those functions. In [32] Malonek et al. studied the existence of local homeomorphims for quaternionic
Beltrami-type equations, and determined a necessary and su�cient criterion that relates the hyper-
complex derivative of a quaternion monogenic function and its corresponding Jacobian determinant.
However, according to our current knowledge nothing has been done in the study of the quasiconfor-
mality factor.

Some of the recent interest in this subject was stimulated by the works of Gürlebeck et al. [16, 17,
18, 19] (cf. [35], Ch.4) in which it is proved that the class of monogenic functions with nonvanishing
Jacobian determinant can be de�ned as a special subclass of quasi-conformal mappings. More precisely,
it is shown that monogenic functions map locally balls onto explicitly characterized ellipsoids and vice
versa. Besides this, methods used in [18] show that these considerations include the description of the
interplay between the Jacobian determinant and the hypercomplex derivative of a monogenic function
also. In continuation of these studies, our goal is to show how do the coe�cient of quasiconformality
looks like in the case of a monogenic function de�ned in a ball of R3 with values in the reduced
quaternions (identi�ed with R3). This is particularly rewarding since the computation of this coe�cient
will give us the information of the ratio of the major to minor axes of the aforementioned ellipsoids.
In our approach, as we shall see, the key tool is the representation of a monogenic 3D Fourier series in
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terms of a special set of solid spherical monogenics. From our point of view these results can be seen as
a step towards for a deeper understanding on the local behavior of monogenic mappings. Later, just as
importantly, this can be used as a basis to study the global behavior of such mappings. In general, it
is still open how to provide the description of monogenic functions via their global geometric mapping
properties. The interest in questions of this type has increased in connection with constructing a
theory of monogenic mappings. A �rst global result was considered recently by Almeida and Malonek
in [3, 31] (cf. [11]). The authors have studied the global behavior of the higher dimensional analogue
of the classical Joukowski transform in the context of Cli�ord analysis.

2 Notation and de�nitions

The present section collects some de�nitions and basic properties of quaternion analysis that will be
needed throughout the text. Let H := {z = z0 + z1i+ z2j+ z3k, zi ∈ R, i = 0, 1, 2, 3} be the real
quaternion algebra, where the imaginary units i, j, and k are subject to the multiplication rules:

i2 = j2 = k2 = −1; ij = k = −ji, jk = i = −kj, ki = j = −ik.

As usual, the real vector space R4 may be embedded inH by identifying the element z := (z0, z1, z2, z3) ∈
R4 with z := z0 + z1i + z2j + z3k ∈ H. Let us make a notation convention. Consider the subset
A := spanR{1, i, j} of H, then the real vector space R3 may be embedded in A via the identi�cation of
x := (x0, x1, x2) ∈ R3 with the reduced quaternion x := x0 + x1i+ x2j ∈ A. To this end, throughout
the text, we will often use the symbol x to represent a point in R3 and x to represent the corresponding
reduced quaternion. Also, it may be worthwhile to point out that A is a real vectorial subspace, but
not a subalgebra of H. Like in the complex case, Sc(x) = x0 and Vec(x) = x1i+ x2j de�ne the scalar
and vector parts of x. The conjugate of x is the reduced quaternion x = x0 − x1i − x2j, and the
norm |x| of x is de�ned by |x|2 = xx = xx = x20 + x21 + x22, and it coincides with its corresponding
Euclidean norm as a vector in R3. Let Ω be an open subset of R3 with a piecewise smooth boundary.
We say that f : Ω −→ A, f(x) = [f(x)]0 + [f(x)]1i + [f(x)]2j is a reduced quaternion-valued function
or, in other words, an A-valued function, where [f ]i (i = 0, 1, 2) are real-valued functions de�ned in Ω.
Properties (like integrability, continuity or di�erentiability) that are ascribed to f have to be ful�lled
by all components [f ]i. We further introduce the real-linear Hilbert space of square integrable A-valued
functions de�ned in B(x, r), that we denote by L2(B(x, r);A;R). The scalar inner product is de�ned
by

< f ,g >L2(B(x,r);A;R)=

∫
B(x,r)

Sc(f g) dV , (1)

where dV denotes the volume of B(x, r). For continuously real-di�erentiable A-valued functions f ,
the reader may be familiar with the (reduced) quaternionic operators D = ∂x0 + i∂x1 + j∂x2 and
D = ∂x0 − i∂x1 − j∂x2 , which are called generalized Cauchy-Riemann (resp. conjugate generalized
Cauchy-Riemann) operators on R3. Namely, a continuously real-di�erentiable A-valued function f is
said to be monogenic in B(x, r) if Df = 0 in B(x, r), which is equivalent to the system

(R)


∂[f ]0
∂x0

− ∂[f ]1
∂x1

− ∂[f ]2
∂x2

= 0

∂[f ]0
∂x1

+
∂[f ]1
∂x0

= 0,
∂[f ]0
∂x2

+
∂[f ]2
∂x0

= 0,
∂[f ]1
∂x2

− ∂[f ]2
∂x1

= 0

.
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Wemay point out that the previous system is called the Riesz system [38], and it generalizes the classical
Cauchy-Riemann system in the plane. Following [27], the solutions of the system (R) are called (R)-
solutions. The subspace of polynomial (R)-solutions of degree n will be denoted by R+(B(x, r);A;n).
In [27], it is shown that the space R+(B(x, r);A;n) has dimension 2n + 3. We also denote by
R+(B(x, r);A) := L2(B(x, r);A;R) ∩ kerD the space of square integrable A-valued monogenic func-
tions de�ned in B(x, r).

For brevity, assume in the sequel that f is an A-valued monogenic function. Furthermore, let
Jf =

(
∂xj [f ]i

)2
i,j=0

be the Jacobian of f and suppose that the mapping f preserves the orientation.

There is a great di�erence in the properties of holomorphic conformal 2D-mappings and monogenic
quasiconformal 3D-mappings. Methods used in [16, 17, 18, 19] and [35] Ch.4, provide us with an idea
of the interaction between quasiconformality and monogenic functions. To be precise, every function
f realizes locally in the neighborhood of a �xed point x = x∗ a M-conformal mapping if and only if
det Jf (x)|x=x∗ ̸= 0.

Theorem 1 (see [19]) Let f be an A-valued real-analytic function de�ned in Ω with non-vanishing

Jacobian determinant. Then, the function f is monogenic if and only if it maps locally a ball onto an

ellipsoid with the property that the reciprocal of the length of one semi-axis is equal to the sum of the

reciprocals of the lengths of the other two semi-axes.

Ultimately, we conclude this section by recalling a suitable set of special monogenic polynomials in
the space R+(B(x, r);A;n), which was introduced in [8] (see also [9]) by applying the hypercomplex
derivative 1

2D (see [15, 34, 40]) to a standard system of spherical harmonics as considered e.g. in
[39]. First, consider x with polar coordinates (r, θ1, θ2): x0 = r cos θ1, x1 = r sin θ1 cos θ2, and x2 =
r sin θ1 sin θ2, where 0 < r < ∞, 0 < θ1 ≤ π, and 0 < θ2 ≤ 2π. To this end, we �rst select the set of
homogeneous harmonic polynomials,

{U l,†
n+1, V

m,†
n+1 : l = 0, 1, . . . , n+ 1, m = 1, . . . , n+ 1}n∈N0 (2)

with the notations U l,†
n+1 := rn+1U l

n+1 and V m,†
n+1 := rn+1V m

n+1; it is formed by the extensions in the ball
of the spherical harmonics U l

n+1(θ1, θ2) = P l
n+1(cos θ1)Tl(cos θ2) (l = 0, . . . , n+ 1), and V m

n+1(θ1, θ2) =
Pm
n+1(cos θ1) sin θ2 Um−1(cos θ2) (m = 1, . . . , n + 1). Here, P l

n+1 stands for the Ferrer's associated
Legendre functions of degree n + 1 and order l of the �rst kind, Tl and Um−1 are the Chebyshev
polynomials of the �rst and second kinds, respectively. We further assume the reader to be familiar
with the fact that whenever l = 0 the corresponding associated Legendre function P 0

n+1 coincides with
the Legendre polynomial Pn+1, and P l

n+1 are the zero functions for l ≥ n+2. Based on the factorization
of the 3D Laplace operator by ∆3 = DD = DD, for each n ∈ N0 we do apply the operator 1

2D to each
basis element of (2). We obtain then the following set of 2n+ 3 homogeneous monogenic polynomials

{Xl,†
n , Ym,†

n : l = 0, . . . , n+ 1, m = 1, . . . , n+ 1}, (3)

where Xl,†
n := rnXl

n and Ym,†
n := rnYm

n . The fundamental references for these polynomials and their
properties are [35] and [36]. The explicit expressions of the mentioned polynomials are given in the
next proposition.
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Proposition 1 (see [36]) The homogenous monogenic polynomials (3) can be represented in the fol-

lowing way

X0,†
n := rn

[
(n+ 1)

2
U0
n +

1

2
U1
ni+

1

2
V 1
n j

]
Xm,†

n := rn
[
(n+m+ 1)

2
Um
n +

1

4
Rm,−

n i+
1

4
Sm,+
n j

]
Ym,†

n := rn
[
(n+m+ 1)

2
V m
n +

1

4
Sm,−
n i− 1

4
Rm,+

n j

]
,

with the notations Rm,±
n (θ1, θ2) := Um+1

n ± (n+m+1)(n+m)Um−1
n , and Sm,±

n (θ1, θ2) := V m+1
n ± (n+

m + 1)(n +m)V m−1
n , where m = 1, . . . , n + 1. For a more uni�ed formulation we remind the reader

that the spherical harmonics Um
n and V m

n are the zero function for m ≥ n+ 1.

The next lemma shows that, for each n ∈ N0, the set (3) is composed by orthogonal polynomials
with respect to the scalar inner product (1).

Lemma 1 (see [8, 9]) For each n = 0, 1, . . ., the polynomials Xl,†
n (l = 0, . . . , n+ 1) and Ym,†

n (m =
1, . . . , n+1) form a complete orthogonal system in R+(B(x, r);A), and their norms are explicitly given

by

∥X0,†
n ∥L2(B(x,r);A;R) =

√
r2n+3

2n+ 3
π (n+ 1),

∥Xm,†
n ∥L2(B(x,r);A;R) = ∥Ym,†

n ∥L2(B(x,r);A;R) =

√
r2n+3

2n+ 3

π

2
(n+ 1)

(n+ 1 +m)!

(n+ 1−m)!
.

Therefore, the Fourier series of f (centered at the origin) with respect to the referred orthogonal system
in R+(B(x, r);A) is de�ned by

f =

∞∑
n=0

√
2n+ 3

π(n+ 1) r2n+3

[
X0,†

n a0n +

n+1∑
m=1

√
2
(n+ 1−m)!

(n+ 1 +m)!

(
Xm,†

n amn +Ym,†
n bmn

)]
, (4)

where for each n ∈ N0, a
0
n, a

m
n , bmn (m = 1, . . . , n+1) are the associated (real-valued) Fourier coe�cients.

3 The distance |f(y)− f(x)| for A-valued monogenic functions

In this section we compute the coe�cient of quasiconformality for any function de�ned inR+(B(x, r);A).
For the reader's convenience and sake of easy reference, we will now brie�y discuss this subject, fol-
lowing mainly the notations introduced in [33]. It should also be remarked that in some cases the idea
is to work with the usual Taylor series expansion of a monogenic function in symmetric powers. We
prefer here to consider a special monogenic Fourier series expansion in terms of homogenous monogenic
polynomials.

To begin with, we shall �nd a general expression for the distance |f(y)−f(x)|. Whence, we consider

f written as in (4). Since the basis polynomials X0,†
n , Xm,†

n and Ym,†
n are homogeneous we can write
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down an expansion of the form

f(y)− f(x) =

∞∑
n=0

√
2n+ 3

π(n+ 1) r2n+3

{(
X0,†

n (y)−X0,†
n (x)

)
a0n

+

n+1∑
m=1

√
2
(n+ 1−m)!

(n+ 1 +m)!

[(
Xm,†

n (y)−Xm,†
n (x)

)
amn +

(
Ym,†

n (y)−Ym,†
n (x)

)
bmn

]}
.

A �rst straightforward computation shows that |f(y)−f(x)| =
√∑2

i=0 ([f(y)− f(x)]i)
2 =

√
F 2
0 + F 2

1 + F 2
2 ,

where

F0 := [f(y)− f(x)]0 =

∞∑
n=0

√
2n+ 3

π(n+ 1) r2n+3

{
(n+ 1)

2

(
U0,†
n (y)− U0,†

n (x)
)
a0n

+
n∑

m=1

√
2
(n+ 1−m)!

(n+ 1 +m)!

(n+ 1 +m)

2

[(
Um,†
n (y)− Um,†

n (x)
)
amn +

(
V m,†
n (y)− V m,†

n (x)
)
bmn
]}

, (5)

F1 := [f(y)− f(x)]1 =

∞∑
n=0

√
2n+ 3

π(n+ 1) r2n+3

{
1

2

(
U1,†
n (y)− U1,†

n (x)
)
a0n

+
n+1∑
m=1

√
2
(n+ 1−m)!

(n+ 1 +m)!

1

4

[(
Um+1,†
n (y)− Um+1,†

n (x) + (n+ 1 +m)(n+m)(Um−1,†
n (x)− Um−1,†

n (y))
)
amn

+
(
V m+1,†
n (y)− V m+1,†

n (x) + (n+ 1 +m)(n+m)(V m−1,†
n (x)− V m−1,†

n (y))
)
bmn
]}

(6)

and

F2 := [f(y)− f(x)]2 =
∞∑

n=0

√
2n+ 3

π(n+ 1) r2n+3

{
1

2

(
V 1,†
n (y)− V 1,†

n (x)
)
a0n

+
n+1∑
m=1

√
2
(n+ 1−m)!

(n+ 1 +m)!

1

4

[(
V m+1,†
n (y)− V m+1,†

n (x) + (n+ 1 +m)(n+m)(V m−1,†
n (y)− V m−1,†

n (x))
)
amn

−
(
Um+1,†
n (y)− Um+1,†

n (x) + (n+ 1 +m)(n+m)(Um−1,†
n (y)− Um−1,†

n (y))
)
bmn
]}

. (7)

The proof of the main result needs a series of technical preparations. Therefore, let us note the following
lemma to our initial calculation:

Lemma 2 [35] The homogeneous harmonic polynomials U l,†
n (l = 0, . . . , n) and V m,†

n (m = 1, . . . , n) are given
in Cartesian coordinates as:

U l,†
n (x) =

[n−l
2 ]∑

k=0

[ l
2 ]∑

j=0

2βn,l,k x
n−2k−l
0 |x|2k(−1)j

(
l

2j

)
xl−2j
1 x2j

2 ,

V m,†
n (x) =

[n−m
2 ]∑

k=0

[m−1
2 ]∑

j=0

2βn,m,k x
n−2k−m
0 |x|2k(−1)j

(
m

2j + 1

)
xm−2j
1 x2j

2 ,
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where the upper bound [s] denotes, as usual, the integer part of s ∈ R and the coe�cients βn,l,k are de�ned in
the following way

βn,l,k = (−1)k
1

2n+1

(
2n− 2k

n− k

)(
n− k

k

)
(n− 2k)l.

Let us introduce a few abbreviations. In the sequel, we will make use of the following system of spherical
coordinates:

y0 = x0 + r cos θ1 = x0 + rc1

y1 = x1 + r cos θ2 sin θ1 = x1 + rc2s1

y2 = x2 + r sin θ2 sin θ1 = x2 + rs2s1 (8)

with si = sin θi and ci = cos θi (i = 1, 2). This being so, we have

|y|2 = y20 + y21 + y22 = (x0 + rc1)
2 + (x1 + rc2s1)

2 + (x2 + rs2s1)
2

= x2
0 + x2

1 + x2
2 + r2 + 2r(x0c1 + x1c2s1 + x2s1s2)

= |x|2 + 2rΛ + r2,

with Λ = x0c1 + x1c2s1 + x2s1s2. In cartesian coordinates it reads Λ = 1/r(< x, y > −|x|2). From this we have
that

(|y|2)k =
(
|x|2 + (2rΛ + r2)

)k
=

k∑
h=0

(
k
h

)
(|x|2)k−h(2rΛ + r2)h .

By de�ning the binomial function

fh+q :=

(
k
h

)(
h
q

)
(|x|2)k−h(2Λ)h−q

satisfying 0 ≤ h+ q ≤ 2k, 0 ≤ q ≤ h ≤ k and fh+q = 0 if h > k, we can rewrite the factor (|y|2)k as

(|y|2)k =
2k∑

h+q=0

fh+qr
h+q. (9)

Using the spherical coordinates (3) and the new relation (9) it is possible to write U l,†
n and V m,†

n as polynomial
functions in r. Next we formulate the result.

Lemma 3 The polynomials U l,†
n and V m,†

n can be written in terms of the spherical coordinates (3) by

U l,†
n (y) =

[n−l
2 ]∑

k=0

[ l
2 ]∑

j=0

2βn,l,k(−1)j
(

l

2j

) n∑
t=0

(
t∑

p=0

g1(k,p)g
2
(j,t−p)

)
rt (10)

with

g1(k,t1) :=

t1∑
p=0

(
n− 2k − l

p

)
xn−2k−l−p
0 cp1fh+q=t1−p,

g2(j,t2) :=

t2∑
p=0

(
l − 2j

p

)(
2j

t2 − p

)
cp2s

t2
1 st2−p

2 xl−2j−p
1 x

2j−(t2−p)
2
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and

V m,†
n (y) =

[n−m
2 ]∑

k=0

[m−1
2 ]∑

j=0

2βn,m,k(−1)j
(

m

2j + 1

) n∑
t=0

(
t∑

p=0

h1
(k,p)h

2
(j,t−p)

)
rt (11)

where

h1
(k,t1)

=

t1∑
p=0

(
n− 2k −m

p

)
xn−2k−m−p
0 cp1 fh+q=t1−p,

h2
(j,t2)

=

t2∑
p=0

(
m− 2j

p

)(
2j

t2 − p

)
cp2s

t2
1 st2−p

2 xm−2j−p
1 x

2j−(t2−p)
2 .

Proof: For sake of simplicity, we just present the proof of the expression (10). Using spherical coordinates
(3) and (9), a �rst straightforward computation shows that

U l,†
n (y) =

[n−l
2 ]∑

k=0

[ l
2 ]∑

j=0

2βn,l,k yn−2k−l
0 |y|2k(−1)j

(
l

2j

)
yl−2j
1 y2j2

=

[n−l
2 ]∑

k=0

[ l
2 ]∑

j=0

2βn,l,k (x0 + rc1)
n−2k−l

 2k∑
h+q=0

fh+qr
h+q


×(−1)j

(
l

2j

)
(x1 + rc2s1)

l−2j(x2 + rs1s2)
2j . (12)

First we consider the expansions of the factors (x0 + rc1)
n−2k−l, (x1 + rc2s1)

l−2j and (x2 + rs1s2)
2j :

(x0 + rc1)
n−2k−l =

n−2k−l∑
i1=0

(
n− 2k − l

i1

)
xn−2k−l−i1
0 (rc1)

i1 ,

(x1 + rc2s1)
l−2j =

l−2j∑
i2=0

(
l − 2j
i2

)
xl−2j−i2
1 (rc2s1)

i2 ,

(x2 + rs1s2)
2j =

2j∑
i3=0

(
2j
i3

)
x2j−i3
2 (rs1s2)

i3 .

Now, using the Cauchy product we obtain

(x0 + rc1)
n−2k−l

 2k∑
h+q=0

fh+qr
h+q

 =
n−l∑
t1=0

(
t1∑

p=0

(
n− 2k − l

p

)
xn−2k−l−p
0 cp1fh+q=t1−p

)
rt1 . (13)

By de�ning

g1(k,t1) :=

t1∑
p=0

(
n− 2k − l

p

)
xn−2k−l−p
0 cp1fh+q=t1−p

we can write

(x0 + rc1)
n−2k−l

 2k∑
h+q=0

fh+qr
h+q

 =
n−l∑
t1=0

g1(k,t1)r
t1 . (14)
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In (14) terms vanish whenever p > n − 2k − l or t1 − p > 2k. The �rst restriction is satis�ed by formula (14).
For the second restriction we know that the binomial function fh+q is de�ned for 0 ≤ h+ q ≤ 2k, being zero if
h+ q < 0 or h+ q > 2k. Therefore, the second restriction is also satis�ed by formula (14). Similarly we obtain:

(x1 + rc2s1)
l−2j(x2 + rs1s2)

2j =

l−2j∑
i2=0

(
l − 2j

i2

)
xl−2j−i2
1 (rc2s1)

i2

2j∑
i3=0

(
2j

i3

)
x2j−i3
2 (rs1s2)

i3

=
l∑

t2=0

(
t2∑

p=0

(
l − 2j

p

)
xl−2j−p
1 (c2s1)

p

(
2j

t2 − p

)
x
2j−(t2−p)
2 (s1s2)

t2−p

)
rt2

=
l∑

t2=0

(
t2∑

p=0

(
l − 2j

p

)(
2j

t2 − p

)
cp2s

t2
1 st2−p

2 xl−2j−p
1 x

2j−(t2−p)
2

)
rt2 .

By de�ning

g2(j,t2) :=

t2∑
p=0

(
l − 2j

p

)(
2j

t2 − p

)
cp2s

t2
1 st2−p

2 xl−2j−p
1 x

2j−(t2−p)
2

we can write

(x1 + rc2s1)
l−2j(x2 + rs1s2)

2j =
l∑

t2=0

g2(j,t2)r
t2 . (15)

In formula (15) terms vanish when p > l−2j or t2−p > 2j. It is readily seen that these restrictions are encoded
in formula (15). Finally, we compute the product between (14) and (15):

(x0 + rc1)
n−2k−l

 2k∑
h+q=0

fh+qr
h+q

 (x1 + rc2s1)
l−2j(x2 + rs1s2)

2j

=
n−l∑
t1=0

g1(k,t1)r
t1

l∑
t2=0

g2(j,t2)r
t2

=
n∑

t=0

(
t∑

p=0

g1(k,p)g
2
(j,t−p)

)
rt. (16)

In formula (16) terms vanish when p > n− l or t− p > l. Replacing (16) in (12) the polynomial U l,†
n is �nally

given by

U l,†
n (y) =

[n−l
2 ]∑

k=0

[ l
2 ]∑

j=0

2βn,l,k(−1)j
(

l

2j

) n∑
t=0

(
t∑

p=0

g1(k,p)g
2
(j,t−p)

)
rt.

In the same way, it can be proved the expression (11) for the polynomials V m,†
n .

We are now ready to proceed to the aim of the present paper, which consists of obtaining expressions for
F0, F1, and F2 in series of r. By Lemma 3 and straightforward computations we can compute the following
di�erences:

U0,†
n (y)− U0,†

n (x) =

[n2 ]∑
k=0

2βn,0,k

n∑
t=1

(
t∑

p=0

p∑
p1=0

(
n− 2k

p1

)
xn−2k−p1

0 cp1

1 fh+q=p−p1

)
rt

=

n∑
t=1

[n2 ]∑
k=0

2βn,0,k

(
t∑

p=0

p∑
p1=0

(
n− 2k

p1

)
xn−2k−p1

0 cp1

1 fh+q=p−p1

)
rt, (17)
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Um,†
n (y)− Um,†

n (x) =

=
n∑

t=1

[n−m
2 ]∑

k=0

[m2 ]∑
j=0

2βn,m,k(−1)j
(
m

2j

) t∑
p=0

(
p∑

p2=0

(
n− 2k −m

p2

)
xn−2k−m−p2

0 cp2

1 fh+q=p−p2

)
(

t−p∑
p3=0

(
m− 2j

p3

)(
2j

t− p− p3

)
cp3

2 st−p
1 st−p−p3

2 xm−2j−p3

1 x
2j−(t−p−p3)
2

)
rt (18)

and, moreover

V m,†
n (y)− V m,†

n (x) =

=
n∑

t=1

[n−m
2 ]∑

k=0

[m−1
2 ]∑

j=0

2βn,m,k(−1)j
(

m

2j + 1

) t∑
p=0

(
p∑

p4=0

(
n− 2k −m

p4

)
xn−2k−m−p4

0 cp4

1 fh+q=p−p4

)
(

t−p∑
p5=0

(
m− 2j

p5

)(
2j

t− p− p5

)
cp5

2 st−p
1 st−p−p5

2 xm−2j−p5

1 x
2j−(t−p−p5)
2

)
rt . (19)

Replacing (17), (18), and (19) in (5), (6), and (7) we obtain

F0 =

∞∑
n=1

n∑
t=1

f
(n)
0,(k,j,t)r

t, F1 =

∞∑
n=1

n∑
t=1

f
(n)
1,(k,j,t)r

t, F2 =

∞∑
n=1

n∑
t=1

f
(n)
2,(k,j,t)r

t, (20)

with

f
(n)
0,(k,j,t) =

√
2n+ 3

π(n+ 1)

{
(n+ 1)

2

(
Ũ0,†

n (y)− Ũ0,†
n (x)

)
a0n

+
n∑

m=1

√
2
(n+ 1−m)!

(n+ 1 +m)!

(n+ 1 +m)

2

[(
Ũm,†

n (y)− Ũm,†
n (x)

)
amn +

(
Ṽm,†

n (y)− Ṽm,†
n (x)

)
bmn

]}
.

For the remaining factors, we have

f
(n)
1,(k,j,t) =

√
2n+ 3

π(n+ 1)

{
1

2

(
Ũ1,†

n (y)− Ũ1,†
n (x)

)
a0n

+
n+1∑
m=1

√
2
(n+ 1−m)!

(n+ 1 +m)!

1

4

[(
Ũm+1,†

n (y)− Ũm+1,†
n (x) + (n+ 1 +m)(n+m)(Ũm−1,†

n (x)− Ũm−1,†
n (y))

)
amn

+
(
Ṽm+1,†

n (y)− Ṽm+1,†
n (x) + (n+ 1 +m)(n+m)(Ṽm−1,†

n (x)− Ṽm−1,†
n (y))

)
bmn

]}

and,

f
(n)
2,(k,j,t) =

√
2n+ 3

π(n+ 1)

{
1

2

(
Ṽ1,†

n (y)− Ṽ1,†
n (x)

)
a0n

+
n+1∑
m=1

√
2
(n+ 1−m)!

(n+ 1 +m)!

1

4

[(
Ṽm+1,†

n (y)− Ṽm+1,†
n (x) + (n+ 1 +m)(n+m)(Ṽm−1,†

n (x)− Ṽm−1,†
n (y))

)
amn

−
(
Ũm+1,†

n (y)− Ũm+1,†
n (x) + (n+ 1 +m)(n+m)(Ũm−1,†

n (x)− Ũm−1,†
n (y))

)
bmn

]}
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where for any m = 1, . . . , n+ 1

Ũ0,†
n (y)− Ũ0,†

n (x) =

[n2 ]∑
k=0

2βn,0,k

(
t∑

p=0

p∑
p1=0

(
n− 2k

p1

)
xn−2k−p1

0 cp1

1 fh+q=p−p1

)
, (21)

Ũm,†
n (y)− Ũm,†

n (x) =

=

[n−m
2 ]∑

k=0

[m2 ]∑
j=0

2βn,m,k(−1)j
(
m

2j

) t∑
p=0

(
p∑

p2=0

(
n− 2k −m

p2

)
xn−2k−m−p2

0 cp2

1 fh+q=p−p2

)
(

t−p∑
p3=0

(
m− 2j

p3

)(
2j

t− p− p3

)
cp3

2 st−p
1 st−p−p3

2 xm−2j−p3

1 x
2j−(t−p−p3)
2

)
(22)

and

Ṽm,†
n (y)− Ṽm,†

n (x) =

=

[n−m
2 ]∑

k=0

[m−1
2 ]∑

j=0

2βn,m,k(−1)j
(

m

2j + 1

) t∑
p=0

(
p∑

p4=0

(
n− 2k −m

p4

)
xn−2k−m−p4

0 cp4

1 fh+q=p−p4

)
(

t−p∑
p5=0

(
m− 2j

p5

)(
2j

t− p− p5

)
cp5

2 st−p
1 st−p−p5

2 xm−2j−p5

1 x
2j−(t−p−p5)
2

)
. (23)

Since the series (20) are absolutely convergent we can write the functions F0, F1, and F2 as polynomials functions
in r, namely

F0 =
∞∑
t=1

∞∑
n=t

f
(n)
0,(k,j,t)r

t, F1 =
∞∑
t=1

∞∑
n=t

f
(n)
1,(k,j,t)r

t, F2 =
∞∑
t=1

∞∑
n=t

f
(n)
2,(k,j,t)r

t, (24)

Now, considering the square of the functions F0, F1 and F2 we obtain

F 2
0 =

∞∑
p=1

a0,pr
p+1, F 2

1 =

∞∑
p=1

a1,pr
p+1, F 2

2 =

∞∑
p=1

a2,pr
p+1, (25)

where

ai,p :=

p∑
u=1

∞∑
n=u

f
(n)
i,(k,j,u)

∞∑
v=p−u+1

f
(v)
i,(k,j,p−u+1), i = 0, 1, 2.

Thus, it follows

F 2
0 + F 2

1 + F 2
2 =

∞∑
p=1

Apr
p+1 (26)

where Ap := a0,p + a1,p + a2,p. In a compact form we �nally obtain

|f(y)− f(x)| =
√
F 2
0 + F 2

1 + F 2
2 =

√√√√ ∞∑
p=1

Aprp+1. (27)
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4 Expansion factor and estimation of the quasiconformality factor

In this section we give explicitly the coe�cient of quasiconformality of any function de�ned in R+(B(x, r);A)
depending on its Fourier coe�cients. Next we formulate the result.

Theorem 2 (On the coe�cient of quasiconformality) Let f be an A-valued function de�ned in R+(B(x, r);A).
The quasiconformality factor kf (x) is given by

kf (x) :=

√
maxA1

minA1
,

where

A1 = a0,1 + a1,1 + a2,1, ai,1 =
∞∑

n=1

f
(n)
i,(k,j,1)

∞∑
v=1

f
(v)
i,(k,j,1) (i = 0, 1, 2).

Proof: For a given A-valued monogenic function, we have proved in the previous section that

|f(y)− f(x)| =

√√√√ ∞∑
p=1

Aprp+1 = r
√
A1 +A2r + . . .+Anrn−1 + . . . . (28)

Taking the limit r → 0 we obtain

lim
r→0

[A1 +A2r + . . .+Anr
n−1 + . . .] = A1. (29)

By using the de�nition of quasiconformality

kf (x) = lim sup
r→0

kf (x, r) = lim sup
r→0

Lf (x, r)

lf (x, r)
,

we can conclude that

kf (x) = lim sup
r→0

max
√
A1 +A2r + . . . Anrn−1 + . . .

min
√
A1 +A2r + . . . Anrn−1 + . . .

that gives an estimation for the factor k of the quasiconformality of f, namely

kf (x) :=

√
maxA1

minA1
(30)

where

A1 = a0,1 + a1,1 + a2,1, ai,1 =
∞∑

n=1

f
(n)
i,(k,j,1)

∞∑
v=1

f
(v)
i,(k,j,1) (i = 0, 1, 2).

For the expressions f (n)
i,(k,j,1), i = 0, 1, 2, considering t = 1 in (21), (22), and (23) we obtain:

Ũ0,†
n (y)− Ũ0,†

n (x) =

[n2 ]∑
k=0

2βn,0,k

(
xn−2k
0 |x|2k + 2kxn−2k

0 (|x|2)k−1Λ + (n− 2k)xn−2k−1
0 c1|x|2k

)

Ũm,†
n (y)− Ũm,†

n (x) =

=

[n−m
2 ]∑

k=0

[m2 ]∑
j=0

2βn,m,k(−1)j
(
m

2j

)[(
xn−2k−m
0 |x|2k

) (
2js1s2x

m−2j
1 x2j−1

2 + (m− 2j)c2s1x
m−2j−1
1 x2j

2

)
+
(
2kxn−2k−m

0 (|x|2)k−1Λ + (n− 2k −m)xn−2k−m−1
0 c1|x|2k

) (
2jxm−2j

1 x2j
2

)]
12



and, moreover

Ṽ m,†
n (y)− Ṽ m,†

n (x) =

=

[n−m
2 ]∑

k=0

[m−1
2 ]∑

j=0

2βn,m,k(−1)j
(

m

2j + 1

)[(
xn−2k−m
0 |x|2k

) (
2js1s2x

m−2j
1 x2j−1

2 + (m− 2j)c2s1x
m−2j−1
1 x2j

2

)
+

+
(
2kxn−2k−m

0 (|x|2)k−1Λ + (n− 2k −m)xn−2k−m−1
0 c1|x|2k

) (
2jxm−2j

1 x2j
2

)]
,

where Λ = x0c1 + x1c2s1 + x2s1s2.

5 Examples

In this section we will compute the quasiconformality constant for some basis polynomials given in (3). For

degree 1, there is only one quasiconformal monogenic polynomial, which is X0,†
1 = x0 +

x1

2
i +

x2

2
j. For this

polynomial we obtain A1 = 1
2

√
4 cos2(θ1) + sin2(θ1), and, therefore, kX0,†

1
(x) =

√
2, independent of the point

x ∈ R3 chosen. The other monogenic polynomials of degree 1 are not quasiconformal since kf (x) = 0. For

example, for X1,†
1 =

3x1

2
− 3x0

2
i we obtain A1 = 3

2

√
cos2(θ2) sin

2(θ1) + cos2(θ1). Since in this case the minimum

is zero, we have kX1,†
1

(x) = ∞. For degree 2 there are some monogenic polynomials that are quasiconformal in

some region of R3. For example, for the polynomial

X0,†
2 =

6x2
0 − 3x2

1 − 3x2
2

4
+

3x0x1

2
i+

3x0x2

2
j (31)

we obtain

A1 =
3

4

(
4x2

2 − 4x2
2 cos

2(θ2) sin
2(θ1)− 8x0x2 cos(θ1) sin(θ2) sin(θ1) + 4x2

0 sin
2(θ1)

−8x0x1 cos(θ1) cos(θ2) sin(θ1) + 4x2
1 − 4x2

1 sin
2(θ2) sin

2(θ1) + 16x2
0 cos

2(θ1)

+ 8x1x2 cos(θ2) sin
2(θ1) sin(θ2)

) 1
2

. (32)

Using the computer algebra system Maple, we �nd that the maximum and the mininum of (32), for each point
x are given by

maxA1 =
3

4

[(
216 |x0|

(
x4
0 +

(
x2
1 + x2

2

)
x2
0 +

7

27

(
x2
1 + x2

2

)2)√
9x2

0 + 4x2
1 + 4x2

2

+ 648

(
x4
0 +

7

9
x2
0

(
x2
1 + x2

2

)
+

1

9

(
x2
1 + x2

2

)2)(
x2
0 +

4

9

(
x2
1 + x2

2

)))/
((

4x2
2 + 4x2

1 + 9x2
0 − 3 |x0|

√
9x2

0 + 4x2
1 + 4x2

2

)(
9x2

0 − 3 |x0|
√

9x2
0 + 4x2

1 + 4x2
2 + 2x2

1 + 2x2
2

))]1
2

(33)

and

minA1 =
3

2
|x0|. (34)
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Therefore, for x0 ̸= 0 the quasiconformality factor kX0,†
2

(x) can be computed by (30). From (34) we can see

that the quasiconformality constant kX0,†
2

(x) behaves as O
(

1

|x0|

)
. For x0 = 0 the polynomial (31) is no longer

quasiconformal.
In the next table we compute the quasiconformality factor kX0,†

2
(x) in di�erent points:

x = (x0, x1, x2) kX0,†
2

(x)(
1
2 ,

1
2 ,

1
2

)
1.600485190(

−1, 1
5 , 2
)

1.734354994

(2,−3, 5) 1.943892809(
1
10 ,

1
5 , 3
)

5.532086985(
1

100 , 1, 0
)

10.02552988

For degree 3 or higher there are also monogenic polynomials that are quasiconformal in some region of R3. We
proceed with the monogenic polynomial of degree 3

X0,†
3 = −3x0x

2
2 − 3x0x

2
1 + 2x3

0 +

(
3x2

0x1 −
3

4
x3
1 −

3

4
x1x

2
2

)
i+

(
−3

4
x2
1x2 −

3

4
x3
2 + 3x2

0x2

)
j . (35)

For this polynomial we obtain

A1 =
[(

81x4
2 + 90

(
x2
1 + 4x2

0

)
x2
2 + 9 (x1 − 2x0)

2
(x1 + 2x0)

2
)
sin2 (θ2)

+ 144 cos (θ2)x2x1

(
x2
1 + x2

2 + 6x2
0

)
sin (θ2) + 9 cos2 (θ2)

(
x4
2 +

(
10x2

1 − 8x2
0

)
x2
2 + 40x2

0x
2
1

+ 9x4
1 + 16x4

0

)]
sin (θ1)

2
+ 144

(
x2
2 + x2

1 − 4x2
0

)
cos (θ1)x0 (sin (θ2)x2 + x1 cos (θ2)) sin (θ1)

+ 144 cos2 (θ1)
(
4x4

0 + x4
2 + 2x2

2x
2
1 + x4

1

)
(36)

Using the computer algebra system Maple, we �nd that the maximum and the mininum of (36), for each point
x, are given by

maxA1 = 9

((
x2
1 + x2

2 +
12

7
x2
0

)((
x2
1 + x2

2

)2 − 16

9
x4
0

)√
49x4

1 + 88x2
0x

2
1 + 98x2

1x
2
2 + 144x4

0 + 88x2
0x

2
2 + 49x4

2

+7x8
2 +

(
128

7
x2
0 + 28x2

1

)
x6
2 +

(
42x4

1 +
384

7
x2
0x

2
1 +

3040

63
x4
0

)
x4
2

+

(
2048

63
x6
0 +

384

7
x2
0x

4
1 + 28x6

1 +
6080

63
x4
0x

2
1

)
x2
2 +

256

7
x8
0 +

3040

63
x4
0x

4
1 +

128

7
x2
0x

6
1 +

2048

63
x6
0x

2
1 + 7x8

1

) 1
2

/
[
4

((
x2
1 + x2

2 −
12

7
x2
0

)√
49x4

1 + 88x2
0x

2
1 + 98x2

1x
2
2 + 144x4

0 + 88x2
0x

2
2 + 49x4

2 + 7x4
2 +

(
−40

7
x2
0 + 14x2

1

)
x2
2

+7x4
1 −

40

7
x2
0x

2
1 +

144

7
x4
0

)]
(37)

and
minA1 =

3

4

∣∣4x2
0 − x2

1 − x2
2

∣∣ . (38)

From (38) we can see that the minimum of A1 is zero along the cone x2
0 =

x2
1 + x2

2

4
. Since in this cone the

maximum of A1 is non-zero we conclude that the quasiconformality factor kX0,†
3

(x) in this case behaves as

O

(
1

|4x2
0 − x2

1 − x2
2|

)
. For x2

0 =
x2
1 + x2

2

4
the polynomial (35) is no longer quasiconformal. In the next table we

compute the quasiconformality factor kX0,†
3

(x) in di�erent points:
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x = (x0, x1, x2) kX0,†
3

(x)(
1
2 ,

1
2 ,

1
2

)
2.485741007(

−1, 1
5 , 2
)

21.21482516

(2,−3, 5) 2.626259389(
1
10 ,

1
5 , 3
)

1.737541999(
1

100 , 1, 0
)

1.732545819

Next �gures show the deformation of the ball B(x, r), centered at x with radius r, by the polynomials (31) and
(35). Figures 1 to 3 correspond to the deformation by the polynomial (31) and Figures 4 to 6 correspond to
the deformation by the polynomial (35). In Figures 1, 2, 4, and 5 we can observe that the ball is mapped onto
an ellipsoid, but in �gures 3 and 6 the ball is not mapped onto an ellipsoid since in the considered ball the
mappings are not longer quasiconformal.
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Fig. 1: x =
(
1
2 ,

1
2 ,

1
2

)
, r = 1

8 Fig. 2: x = (2,−3, 5) , r = 1
8 Fig. 3: x =

(
1

100 , 1, 0
)
, r = 1
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0.2
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0.16
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–1

–22
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0
1
2

Fig. 4: x =
(
1
2 ,

1
2 ,

1
2

)
, r = 1

20 Fig. 5: x =
(

1
10 ,

1
5 , 3
)
, r = 1

10 Fig. 6: x =
(

1
100 , 1, 0

)
, r = 1
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