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Abstract

In this paper the authors compute the coefficient of quasiconformality for monogenic functions
in an arbitrary ball of the Euclidean space R3. This quantification may be needed in applications
but also appear to be of intrinsic interest. The main tool used is a 3D Fourier series development of
monogenic functions in terms of a special set of solid spherical monogenics. Ultimately, we present
some examples showing the applicability of our approach.
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1 Introduction

By a classical theorem of Liouville [28], the usual definition of conformal mappings in the n-dimensional
Euclidean space R™ when n > 3 applies only to the restricted set of Mobius transformations. For
this reason, the theory of conformal mappings is essentially restricted to 2D settings. Actually, for
quasiconformal mappings the situation is quite different; there exist several possible ways to give an
infinitesimal notion of quasiconformality. In order to explain our standing position, let us consider a
homeomorphism f of a domain D C R" onto a domain D' c R™ For z € D, r > 0 and a 3D closed
ball B(x,7) C D of center z and radius r, we set

Lf(a:, T)

Ly(e,r)i= max |£() = f@)] Iler) = min |f) = f@ kylar) = P
T—y|=r T—y|=r f T, T

The coeffcient of quasiconformality (or linear dilatation) of f at « € D is defined as k¢(x) = limsup,_,o kf(x, 7).
For our purposes here, the orientation preserving homeomorphism f : D — D' is called k-quasiconformal
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inD'if k¢(x) is bounded in D and k¢(z) < k for almost all points € D. Then a mapping is called qua-
siconformal if it is k-quasiconformal for some k (1 < k < 00). The distortion theory of quasiconformal
mappings is usually connected to problems of obtaining global distortion bounds under quasiconformal
deformations from the local bounds of k¢. The major sources of the theory of quasiconformal map-
pings in the plane are found in the works of Grétzsch [14], Lavrent’ev [25], Ahlfors [1], and Teichmiiller
[41]. In the meantime, quasiconformal mappings became a classical object of analysis due to its rich
behavior and wide range of applicability in various fields of mathematics such as discrete group theory,
mathematical physics, complex differential geometry, medical image analysis, and probability theory.
Higher dimensional quasiconformal mappings were first introduced by Lavrent’ev in 1938 [26], followed
over a period of several years by a series of famous works: Ahlfors [2], Gehring [13], and Viisald [42, 43].
The reader can consult the book of Rickman [37] for a more recent treatment of the subject.

In general, the study of quasiconformal mappings is important for the construction of analytic map-
pings with specified dynamics, which can be used as coordinate transformations in various problems,
e.g. in the study of partial differential equations [7]. The dilatation of quasiconformal mappings con-
trols the way conformal invariants, such as moduli of annuli, can be changed. Especially, in the theory
of renormalizations, we can measure how distant a map is from another one in terms of dilatations
of conjugacies. For that it is essential to have an estimate for the dilatation of the quasiconformal
mapping. For such applications in higher dimensions the study of the quasiconformality factor is fun-
damental. Recent statistical studies have shown that quasi-conformal mappings can also be useful
for approximate recovery of the boundary shape of domains in inverse problems, e.g. in scattering,
diffraction problems and tomography [20, 21, 22, 23|.

The discussion about the extension of theoretical and practical quasiconformal mapping techniques
in the quaternion analysis setting, has originated many questions. Yet a large number of investigations
[12, 15, 24, 29, 40] were carried out in connection with the goal of studying monogenic functions by a
corresponding differentiability concept or by the existence of a well-defined hypercomplex derivative.
However, up to now there are feeble attempts to characterize monogenic functions via a generalized
conformality concept. It was Malonek who first introduced the concept of monogenic conformal map-
pings [30]. These mappings are called in [30] M-conformal mappings. The relation of this concept
with the geometric interpretation of the hypercomplex derivative %5 allowed it to complete the theory
of monogenic functions by providing an accounting for the still missing geometric characterization of
those functions. In [32] Malonek et al. studied the existence of local homeomorphims for quaternionic
Beltrami-type equations, and determined a necessary and sufficient criterion that relates the hyper-
complex derivative of a quaternion monogenic function and its corresponding Jacobian determinant.
However, according to our current knowledge nothing has been done in the study of the quasiconfor-
mality factor.

Some of the recent interest in this subject was stimulated by the works of Giirlebeck et al. [16, 17,
18, 19] (cf. [35], Ch.4) in which it is proved that the class of monogenic functions with nonvanishing
Jacobian determinant can be defined as a special subclass of quasi-conformal mappings. More precisely,
it is shown that monogenic functions map locally balls onto explicitly characterized ellipsoids and vice
versa. Besides this, methods used in [18| show that these considerations include the description of the
interplay between the Jacobian determinant and the hypercomplex derivative of a monogenic function
also. In continuation of these studies, our goal is to show how do the coefficient of quasiconformality
looks like in the case of a monogenic function defined in a ball of R? with values in the reduced
quaternions (identified with R?). This is particularly rewarding since the computation of this coefficient
will give us the information of the ratio of the major to minor axes of the aforementioned ellipsoids.
In our approach, as we shall see, the key tool is the representation of a monogenic 3D Fourier series in



terms of a special set of solid spherical monogenics. From our point of view these results can be seen as
a step towards for a deeper understanding on the local behavior of monogenic mappings. Later, just as
importantly, this can be used as a basis to study the global behavior of such mappings. In general, it
is still open how to provide the description of monogenic functions via their global geometric mapping
properties. The interest in questions of this type has increased in connection with constructing a
theory of monogenic mappings. A first global result was considered recently by Almeida and Malonek
in |3, 31] (cf. |11]). The authors have studied the global behavior of the higher dimensional analogue
of the classical Joukowski transform in the context of Clifford analysis.

2 Notation and definitions

The present section collects some definitions and basic properties of quaternion analysis that will be
needed throughout the text. Let H := {z = 29 + z11 + 22j + 23k, 2z; € R, i =0,1,2,3} be the real
quaternion algebra, where the imaginary units i, j, and k are subject to the multiplication rules:

P=j=k=-1; ij=k=-ji, jk=i=-kj, ki=j=-ik

As usual, the real vector space R* may be embedded in H by identifying the element z := (2, 21, 22, 23) €
R* with z := 29 4+ 211 + 22j + 23k € H. Let us make a notation convention. Consider the subset
A :=spang{1,1i,j} of H, then the real vector space R? may be embedded in A via the identification of
x = (20,71, 72) € R? with the reduced quaternion x := x¢ + 21i + 22j € A. To this end, throughout
the text, we will often use the symbol z to represent a point in R? and x to represent the corresponding
reduced quaternion. Also, it may be worthwhile to point out that A is a real vectorial subspace, but
not a subalgebra of H. Like in the complex case, Sc(x) = z¢ and Vec(x) = x1i + x2j define the scalar
and vector parts of x. The conjugate of x is the reduced quaternion X = xy — x1i — x2j, and the
norm |x| of x is defined by [x|? = xX = Xx = 23 + 2% + 23, and it coincides with its corresponding
Euclidean norm as a vector in R3. Let € be an open subset of R with a piecewise smooth boundary.
We say that £ : Q — A, f(z) = [f(x)]o + [£(x)]11 + [f(z)]2] is a reduced quaternion-valued function
or, in other words, an A-valued function, where [f]; (i = 0,1, 2) are real-valued functions defined in .
Properties (like integrability, continuity or differentiability) that are ascribed to f have to be fulfilled
by all components [f];. We further introduce the real-linear Hilbert space of square integrable A-valued
functions defined in B(x,r), that we denote by La(B(x,7); A;R). The scalar inner product is defined
by

< f, g >L2(§(x,r);.A;R) = L(I r) Sc(f g) d‘/7 (1)

where dV denotes the volume of B(x,r). For continuously real-differentiable A-valued functions f,
the reader may be familiar with the (reduced) quaternionic operators D = 0y, + 10, + jO», and
D = 8y, — 0y, — jOu,, which are called generalized Cauchy-Riemann (resp. conjugate generalized
Cauchy-Riemann) operators on R?. Namely, a continuously real-differentiable A-valued function f is
said to be monogenic in B(z,r) if Df =0 in B(z,r), which is equivalent to the system

al‘o - (9331 B 81‘2 =0
" Olflo | Of] Olflo  OIf] olfl, _ 9olf]
0 1 0 2 1 2 _
61‘1 + 61‘0 N 0’ 31172 + 8:170 N 0’ 8:132 61‘1 0



We may point out that the previous system is called the Riesz system [38], and it generalizes the classical
Cauchy-Riemann system in the plane. Following [27], the solutions of the system (R) are called (R)-
solutions. The subspace of polynomial (R)-solutions of degree n will be denoted by R*(B(x,r); A;n).
n [27], it is shown that the space R (B(z,r); A;n) has dimension 2n + 3. We also denote by
RT(B(z,r); A) := Lo(B(z,7); A;R) Nker D the space of square integrable A-valued monogenic func-
tions defined in B(x,r).

For brevity, assume in the sequel that f is an A-valued monogenic function. Furthermore, let
Jr = (azj [f]i)szo be the Jacobian of f and suppose that the mapping f preserves the orientation.
There is a grez;t difference in the properties of holomorphic conformal 2D-mappings and monogenic
quasiconformal 3D-mappings. Methods used in [16, 17, 18, 19| and [35] Ch.4, provide us with an idea
of the interaction between quasiconformality and monogenic functions. To be precise, every function
f realizes locally in the neighborhood of a fixed point x = * a M-conformal mapping if and only if
det Jg(x)|,_,« # 0.

Theorem 1 (see [19]) Let £ be an A-valued real-analytic function defined in @ with non-vanishing
Jacobian determinant. Then, the function £ is monogenic if and only if it maps locally a ball onto an
ellipsoid with the property that the reciprocal of the length of one semi-axis is equal to the sum of the
reciprocals of the lengths of the other two semi-azxes.

Ultimately, we conclude this section by recalling a suitable set of special monogenic polynomials in
the space RT(B(z,7); A;n), which was introduced in [8] (see also [9]) by applying the hypercomplex
derivative 2D (see [15, 34, 40]) to a standard system of spherical harmonics as considered e.g. in
[39]. First, consider x with polar coordinates (r,61,602): o = rcosfi, 1 = rsinfé; cosfs, and zo =
rsin @y sin @, where 0 < 7 < 00, 0 < 61 < 7, and 0 < 02 < 27w. To this end, we first select the set of
homogeneous harmonic polynomials,

(UL vl =01, n+ 1, m=1,...,n+ L}uen, (2)

Wby =r"TUl ) and V:H = r"HV™ 5 it is formed by the extensions in the ball
of the spherical harmomcs Ul +1(91, 02) = P, (cos 61)Tj(cos 92) (1=0,...,n+1),and V% (01,02) =
P (cosby)sinfy Up,—1(cosb) (m = 1,...,n + 1). Here, P! 1 stands for the Ferrer’s associated
Legendre functions of degree n + 1 and order ! of the first kind, 7; and U,,—; are the Chebyshev
polynomials of the first and second kinds, respectively. We further assume the reader to be familiar
with the fact that whenever [ = 0 the corresponding associated Legendre function P? i1 coincides with
the Legendre polynomial P, 1, and P! nt1 are the zero functions for I > n+2. Based on the factorization
of the 3D Laplace operator by As = DD = DD, for each n € Ny we do apply the operator 2D to each

basis element of (2). We obtain then the following set of 2n + 3 homogeneous monogenic polynomials

with the notations U"!

(XL ymi.1=0,...,n4+1, m=1,...,n+ 1}, (3)

where X! := r"X! and Y7 1= r™"Y . The fundamental references for these polynomials and their
properties are [35] and [36]. The explicit expressions of the mentioned polynomials are given in the
next proposition.



Proposition 1 (see [36]) The homogenous monogenic polynomials (3) can be represented in the fol-
lowing way

n+1 14, 1.4,
X0t = [( 5 Jyo 4 SUni+ 2V£J}
1 1 1
Xyt = g7 [(" ki ZL g T 4S7T’+j}
1 1 1
Yt = " [(” T > Dy Lo 4R2”’+j} :

with the notations Ry (01,02) :== U + (n4+m+1)(n+m)U™ L, and Sp"~(61,602) := V" £ (n+
m+ 1)(n +m)V"" L where m = 1,...,n+ 1. For a more unified formulation we remind the reader
that the spherical harmonics U™ and V' are the zero function for m >n + 1.

The next lemma shows that, for each n € Ny, the set (3) is composed by orthogonal polynomials
with respect to the scalar inner product (1).

Lemma 1 (see [8, 9]) For each n=0,1, ..., the polynomials X5 (1=0,...,n+1) and YoT (m =
1,...,n+1) form a complete orthogonal system in R™(B(z,r); A), and their norms are explicitly given
by

0 r2n+3
X Ly (Ba)am) = ot 3" (n+1),

r2nt3 g (n+1+m)!
HXZMHM(F(W);A;R) - HY:“Ln’T”Lz(E(w);A;R) B \/2n + 3§(n * )(n +1-—m)!"

Therefore, the Fourier series of f (centered at the origin) with respect to the referred orthogonal system
in RT(B(z,r); A) is defined by

= 2n+3 U, (n+1—m)!
f = 2T g I x0i,0 gl v - (Xmﬂr m meTbM> 4
7;) 7T(n+1)r2n+3[ nan+zz (n+1+m)‘ n CLn+ noon ’ ()
where for each n € Ng, a2, a™,b™ (m = 1,...,n+1) are the associated (real-valued) Fourier coefficients.

3 The distance |f(y) — f(z)| for A-valued monogenic functions

In this section we compute the coefficient of quasiconformality for any function defined in R* (B(z,r); A).
For the reader’s convenience and sake of easy reference, we will now briefly discuss this subject, fol-
lowing mainly the notations introduced in [33|. It should also be remarked that in some cases the idea
is to work with the usual Taylor series expansion of a monogenic function in symmetric powers. We
prefer here to consider a special monogenic Fourier series expansion in terms of homogenous monogenic
polynomials.

To begin with, we shall find a general expression for the distance |f(y) —f(z)|. Whence, we consider
f written as in (4). Since the basis polynomials X%T, XZ” and Y, o1 are homogeneous we can write



down an expansion of the form

B > 2n+3 4 4
fly) —f(z) = 7;) W{ (X% (y) — X3, (@) aj,
R, (n+1—m)!
2 (Xt (y) = X)) e+ (Yt () = Yot ) ) b }
A first straightforward computation shows that |f(y x)| = \/ZZ o (m)]z)2 = /¢ + F2+ F},
where
Ro= I -t =3 TS . { D (ot() - 021 (@) ot
+ Y2 ) () - U @)+ (V) - V) o] } Q
Fo= ) -t =2 W{; (U ()~ U (@) o)

asy (n+1—-m)!'1 1 1 1 1
P (O @) = U @) + (o L m) e m) (U (@) = U () e

) = V@) (e L) m) (V) - V) bm]} ©
and
By = [f) -t = Y ﬂ(ﬁgfw{;(v;*(y)v;w))a%
n=0

302 g L) = V@) (o L) ok m) (V2 ) = V2 @)

— (U () = U5 (@) + (04 1+ m)(n +m) (U (y) — U5 () 7] } (7)

The proof of the main result needs a series of technical preparations. Therefore, let us note the following
lemma to our initial calculation:

Lemma 2 [35] The homogeneous harmonic polynomials ULT (1=0,...,n) and VT (m =1

,-..,N) are given
in Cartesian coordinates as:

- B
UGt = 30 3 2Bl el 1)3( .)wi

k=0 j5=0 2j

v Z Z 2B e 2 2 (- 1>J( ) 22,

27 +1




where the upper bound [s] denotes, as usual, the integer part of s € R and the coefficients By 1 1 are defined in

the following way
1 2n —2k\ (n—k
_ k
Buak = (=1) PAE < n—k ) < k ) (n.= 2k

Let us introduce a few abbreviations. In the sequel, we will make use of the following system of spherical
coordinates:

Yo = To+rcosfy =ux0+TC]
y1 = 1+ rcosbysinfy =z + oSy
Yya = @9+ rsinfysinf; = xo + 1rsosy (8)

with s; = sin6; and ¢; = cos8; (i = 1,2). This being so, we have

|y\2 = y% + yf + yS = (zo+ 7’01)2 + (21 + 7"0251)2 + (z2 + 7"5251)2
a:g + 22 4 22 + 1+ 2r(zgcr + T1c251 + T2515)
|x\2 + 2rA + 12,

with A = xgc; + 21c981 + 225152 In cartesian coordinates it reads A = 1/7(< x,y > —|z|?). From this we have
that

k
(W) = (ol 4 rns ) = 3 (1) (o) orh 4120
h=0

By defining the binomial function

o= (3 ) () Qe ny

satisfying 0 < h+q <2k, 0 < ¢ < h <k and friq =0if h > k, we can rewrite the factor (Jy[*)* as

2k
Iy = D" fargr™™e. 9)

h+q=0

Using the spherical coordinates (3) and the new relation (9) it is possible to write UT and V> as polynomial
functions in r. Next we formulate the result.

Lemma 3 The polynomials ULt and V™1 can be written in terms of the spherical coordinates (3) by

(%] [3] no o/t
Ubt(y) = > > 2Bnux(—1) (22) > (Z g%hp)g?j,tp)) rt (10)

k=0 j=0 t=0 \p=0

with

t1
1 L n—2k—1 n—2k—l—pcp
g(kﬂfl) T Z p Lo 1fh+q:t1*137

p=0

to . .
l—2j 2j to—p 1—2j—p 2j—(ta—
9(2j,t2) = § : ( )(tz _p> chssy Cay ) ay (ta=r)

p=0 4



and

[n—an] [%] n t
m, _ j m
Virty) = 3 > 2Bnma(-1) (2j+ 1) (Z h%mp)h%j,t—p)) rt (1)
k=0 j—0 t

=0 \p=0

where

t1
n—2k—m\ ,_ok_m—
hirey =D ( ) T P} frta=ti—p>

p=0 p
2 2 m— 2.7 2] to to— m—2j—p _2j—(ta—p)
hiGita) :Z » to —p sy Pay T T Pay TR
p=0

Proof: For sake of simplicity, we just present the proof of the expression (10). Using spherical coordinates
(3) and (9), a first straightforward computation shows that

221 4
_ok— LY 12 2j
U ) = 30 D a1 () )l

k=0 ;=0

5] [5] 2k

Z ZQBnJ,k (170 +TC1)n72kil Z fh+q7‘h+q
k=0 j=0 h4q=0

x(—1)7 (;j) (21 + 7cas1) 2 (zg + 15152) Y. (12)

[

First we consider the expansions of the factors (g + rcy)" 281 (21 + regs) =2 and (29 + rs182)% -

n—2k—1
n—2k— n—2k—1 n—2k—l—i i
(zo +7ey)" 2R = Z ( . ) A (VR L

11
i1=0

=25 .
. _9 i .
(z1 +7rees) ™% = E ( : < )xll T2 (pey )2

i
i2=0 2
25 97
2 _ J 2j—i3 i
(2 +rs189)” = ( i ) x5 (rs1s2)®.
i3=0

Now, using the Cauchy product we obtain
2k n—I1 t1 n— 92k —1
(xO + Tcl)nizkil Z fh—&-qthrq = Z (Z ( )ngklpcll)fh+q—t1—P> rtl' (13)
h+q=0 t1=0 \p=0 p
By defining
L n—2k—1
— 2K — —2k—1—
i) =D ( )xg P frta=ti—p
p=0 p

we can write

2k n—I
(o + 7ep )2k Z Fraqr™t | = Z g(lk,tl)rtl' (14)
h+q=0 t1=0



In (14) terms vanish whenever p > n — 2k — [ or t; — p > 2k. The first restriction is satisfied by formula (14).
For the second restriction we know that the binomial function f54 is defined for 0 < h 4 ¢ < 2k, being zero if
h+q < 0or h+q > 2k. Therefore, the second restriction is also satisfied by formula (14). Similarly we obtain:

1—2j . 2j .
(xl +T6281)li2j($2+?"8182)2j _ Z <l .2]>xl12jzz(7,6281)i2 Z (?J)xgjm(rslSQ)ig

i2=0 2 i3=0 '3
S (12 ooy 2\ 2i(ta—)

> (Z( Jalrt s (Y )i <>>
a0 \p,mo \ P t2 —p
(S (12N 2 ptatap 120 25— (t2)

= Z Z( >< >c’20512522 P T TRy TR e,
220 \»=o p to—p

By defining

to . .
I—2j5 23 ty to—p 1—2j—p 2j—(ta—p)
Ity = Z < p ) <t2 —p) chsp? sy Py T P! TR

p=0

we can write
l

(w1 + reas1)' ™% (wg + rs1s0)¥ = Z I (15)
to=0

In formula (15) terms vanish when p > [ —2j or t3 —p > 2j. It is readily seen that these restrictions are encoded
in formula (15). Finally, we compute the product between (14) and (15):

2k
(o + 7)) L N fuggr™T | (w1 + reas:) T (wa + rs152)Y
h+q=0

l
1 t1 2 t2
I(k,t1)" Z 92"
to=0

n t
( g%wgatm) 16)
p=0

t=0

—

n

o~
[

In formula (16) terms vanish when p > n —1[ or t — p > I. Replacing (16) in (12) the polynomial U.1 is finally
given by

2 e n t
v = 35 a1 (y)) Z(Zg%k,mg%j,w)
k=0 j=0 t=0 \p=0

In the same way, it can be proved the expression (11) for the polynomials V.
We are now ready to proceed to the aim of the present paper, which consists of obtaining expressions for

Fy, Fi, and F5 in series of r. By Lemma 3 and straightforward computations we can compute the following
differences:

[%] n t P N
Upt(y) = U (2) = Z 2Bn,0,k Z (Z Z (n p12k) a2 fh+q_p_p1> rt

n [%] t _
Z 20Bn,0,k ( Z (n 2k) x872k7p1 C]fl fh+qpp1> Ttv (17)
P

Ne]



Ut (y) = Ui (2) =

n
n [n;m] [%] ‘

, u — 2k — ok
= : Q/Bn,m,k(_l)J <;’;> Z (Z (n P2 m) l‘g Phmmps cﬁ’z fh+q=l)—p2>

p=0 \p2=0

—p ] )
-2 2 b i (—p—

< (mp J) (tp]p )6127383 p8t2 P p3x11’n 2j—ps chj (t—p P3)> rt (18)

p3=0 3 3

and, moreover

Vit (y) = Vi T(a) =
n (252 ][]

j ¢ — 2k — n—2k—m—ps pa
= : Qﬁnﬂn,k(_l)] <2J+1>Z<Z ( m>x0 2 i’ 6217 f}L+q—p—p4>

t
t—p m— 2 . 2 . . .
( J) ( J )szag Sifpsgfpfps) x;nﬂjfpsxga*(t*p*ps) Pt (19)
o\ D5 t—=p—ps

Replacing (17), (18), and (19) in (5), (6), and (7) we obtain

n

o0 n o0 n o0
= Z Z fé%mrﬂ = Z Z fl(?gc,j,t)’”t’ = Z Z fézmw’“t’ (20)
t=1 t=1

n=1t= n=1t=1 n=1t=

with

(n) _ 2n+3 J(n+1) 104 50,4 0
fo.kin = 7r(n+1){ 5 (Un (y) - U, (m))a

: mz-l 2 () - T @)+ (V2T ) - Vi) 0] }

For the remaining factors, we have

2 3 |1/~ ~
ik = s (0410 - O )

+n§ Lf)l {(UerlT( ) = Ut @) + (n+ 1+ m)(n+m) (U~ (z) — T ))) an
(n+1+m)4 ! n Co

+ (Vi () = VE @) + (o L m) o+ m)(Vie () = Vi () o }

and,

10



where forany m=1,...,n+1

E

2 t P B
Ui (y) - U (@ 225"0" (Z Z (n %) o T fh+q—p—p1> ) (21)

p=0p1=0

Tyl () - Ui ) =
[Z] > 2Bn,m.1( ( > i: ( — <n - i/z - m> xgi%imim o fh+q—ppz>

p=0

t— )
—2j 2j cgds -py f —p— psx;n—2j—ps xgj—(t—p—ps) (22)
o\ Ps t—p—ps3

Vit(y) - Viri(a) =

n— rn][1n 1

2 2 m ¢ " n—2k—m
- - n—2k—m—ps p
E 2571 m, k <2j + 1) g ( g ( D4 )lo 4 Cl4fh+q_p_p4>

k=0 j=0 p=0 \ps=0

<= (m—2j 2j : ;
Z ( g ])< - J_ )cgsstl ps; p— pox;n—%—psxgj*(tfpfps) ) (23)
pezo \ P t—=p—ps

Since the series (20) are absolutely convergent we can write the functions Fy, Fy, and Fs as polynomials functions
in r, namely

and

Fo= Z Z <k,m r, = Z Z fl(@c,j,t)’"t’ ZZ (lw t) (24)

t=1 n=t t=1 n=t t=1 n=t

Now, considering the square of the functions Fy, F; and F, we obtain

oo o0 oo
2 1 2 pt1 2 1
F; = g ao’pr’”' , Ff = E alﬁpr""’ , Fy = E agyprm' , (25)
p=1 p=1

p=1

where

Qip == Z Z f ,(k,j,u) E f i,(k,j,p—u+1)’ 1 =0,1,2.
u=1n=u v=p—u+1
Thus, it follows

Fg+FR+F5 =) Aprrt! (26)

where Ay, :=agp + a1, + az,p. In a compact form we finally obtain

y) — J(@) = \JF3 + F? + F} =

11



4 Expansion factor and estimation of the quasiconformality factor

In this section we give explicitly the coefficient of quasiconformality of any function defined in R*(B(z,7);.A)
depending on its Fourier coefficients. Next we formulate the result.

Theorem 2 (On the coefficient of quasiconformality) Let f be an A-valued function defined in R* (B(z,r); A).
The quasiconformality factor k¢(x) is given by

max A;

kj(l’) =

min A’

where
Ay =ap1+a11+az, aiy = Z fi(f(z;)g%l) Zfi(ﬂ%l) (i=0,1,2).
n=1 v=1

Proof: For a given A-valued monogenic function, we have proved in the previous section that

ZAprP+1:r\/A1+A2r+...+AnT"_1+--~- (28)
p=1

£(y) — £(x)| =
Taking the limit » — 0 we obtain
li_}r%[Al +Agr 4. AT R ] = AL (29)

By using the definition of quasiconformality

L
ky(x) = limsup ks (z, r) = lim sup Ly(z,r)

r—0 r—0 lf (37, T) ’

we can conclude that

. maxvA; + Asr + .. AT+
k¢(x) = limsup —
r—0 minvA; + Asr+ .. AT+

that gives an estimation for the factor k of the quasiconformality of f, namely

hy() = ) R2x A (30)

min A,

where
A1 =001+ a1+ a2, Z Fitan 2o Fiegny (1 =01,2)
v=1

For the expressions fl(?,)v j1y> ©=0,1,2, considering t = 1 in (21), (22), and (23) we obtain:

USJL( UOJT ZZgnOk ‘r(] 2k|l“2k+2kl’n 2k(|1’|2)k71/\+(n72k)18 2k—1 |£E|2k)

O (y) = 07 ) =
=521 (3]

fm .
— 26n,m,k(_1)] <2J> [(% 2k— m|x|2k) (2]81821'7171 2j 2] 1+( 2])028 x71n 25—1 2])
k=0 ;=0

o3

+ (kag—Qk—m(|x|2)k71A + (’fl — 9k — m)a:g_%_m_lcﬂx\%) (2]Im 25 3]):|

12



and, moreover

m ok . o i . i1 9
= Z ZQﬁn,m’k(—l)J <2j+1> [(mg 2k | 2R) (2]3152351 227 4 (m - 2)easyay 1:(:3])4—

+ (2kzg 2 (J2P)F A + (n = 2k — m)zy 2 ey |2 ?F) (ijv;%zjmgj)} 7

where A = xgc1 + 216281 + 2251 59.

5 Examples

In this section we will compute the quasiconformality constant for some basis polynomials given in (3). For

%i + %j. For this

polynomial we obtain 4; = %\/4 cos?(61) + sin?(6;), and, therefore, kx?,f(:c) = /2, independent of the point

z € R3 chosen. The other monogenic polynomials of degree 1 are not quasiconformal since k¢(z) = 0. For

3r1 3z
example, for X%’T = 71 - TOi we obtain A; = %\/cos2 (62) sin?(6;) + cos2(6). Since in this case the minimum

is zero, we have ky1.1(x) = co. For degree 2 there are some monogenic polynomials that are quasiconformal in
1

degree 1, there is only one quasiconformal monogenic polynomial, which is X(IJ’T =29 +

some region of R3. For example, for the polynomial

6x2 — 322 —3x2  3xori. 3x0To.
Xyl = FO ST g S S (31)

we obtain

A = % (435% — 423 cos?(0y) sin?(0;) — 8xgwa cos(fy) sin(fy) sin(0;) + 422 sin?(0;)

—8xox1 cos(f1) cos(fa) sin(61) + 42 — 4a? sin®(0y) sin® (1) + 1623 cos?(6;)

1

2

+ 81115 cos(fy) sin?(6;) sin(92)> . (32)

Using the computer algebra system Maple, we find that the maximum and the mininum of (32), for each point
x are given by

max A; = g |:<216 |o] (xé + (x? —|—x§) x5 + 2—77 (m% +I§)2) \/9x2 + 423 +4a3
7 1 4
+ 648 (mé + §:v(2) (a:f + x%) + 3 (:Ef +x§)2) (x% + 3 (xf + m%)) )/

1
<<4m§+4x§+9mg—3|xo 9mg+4x%+4x§> (9:6(2)—3\x0| 9x3+4x%+4x§+2z%+21‘§)> 2
(33)
and
min A; = g|x0|. (34)

13



Therefore, for xg # 0 the quasiconformality factor kxg,f(l‘) can be computed by (30). From (34) we can see

1
that the quasiconformality constant kxg,T (z) behaves as O (

| > . For &y = 0 the polynomial (31) is no longer
o

quasiconformal.
In the next table we compute the quasiconformality factor kxg,T (z) in different points:

= (z0,21,22) | kxoi (@)
(%7%,%) 1.600485190
(—1,1,2) | 1734354994
(2,-3,5) 1.943892809
(&.5,3) | 5532086985
(Z,1,0) | 10.02552988

For degree 3 or higher there are also monogenic polynomials that are quasiconformal in some region of R?. We
proceed with the monogenic polynomial of degree 3

3 3 3 3
Xg’T = —3xox3 — 3wox? + 225 + (3:(;(2)3:1 - Zx‘;’ - 41:137%) i+ <—4x%x2 - ng’ + 335%:(;2) J. (35)

For this polynomial we obtain
A = [(81.%3 +90 (23 + 4a3) 23 + 9 (21 — 220)? (x1 + 2x0)2) sin? (6s)
+ 144 cos (02) zox1 (25 + 23 + 62F) sin (62) + 9cos® (6a) (23 + (1027 — 82F) 23 + 40z7]

+ 927 + 162)] sin (61)° + 144 (23 + 27 — 423) cos (61) mg (sin (62) 22 + 1 cos (62)) sin (6;)
+ 144 cos® (61) (4ag + 23 + 22327 + 27) (36)

Using the computer algebra system Maple, we find that the maximum and the mininum of (36), for each point
x, are given by

12
max A, =9 ((mf + 23 + 71’3) ((mf +a2)? =2 0) \/499@1 + 882222 + 98222 + 144xd + 88x2x2 + 494
28 384 3040
+7x2 + <7m0 + 28m1) xg + (42:51 + 7 me + 63 xé) x%
1
2048 384 6080 256 3040 128 2048 2
+ (B + oot +osot+ Glatot ) ot 4 Boai 4+ Hlutat + Lot 4 a4 7at) /
2 2 12 5 4 2,2 2,2 4 2,2 4 4 40
4 (x1+2x3 — =0 \/499[:1 + 88zgxy + 98x{xs 4 144x; + 88x5rs + 4925 + Tro + —57 %o + 147
40 144
Hﬁ—7%ﬁ+7w@} (37
and 5
min A; = 1 42§ — 27 — 23] . (38)

2 2
Ty + Ty . . .
. Since in this cone the

From (38) we can see that the minimum of A; is zero along the cone z3 =

maximum of A; is non-zero we conclude that the quasiconformality factor kxg,’r(ﬂf) in this case behaves as

1 2 2
0 <4x%—x?—x§> . For 23 = | 1—% the polynomial (35) is no longer quasiconformal. In the next table we
1

compute the quasiconformality factor kxg,f () in different points:

14



ng,T (I)

2.485741007

21.21482516

2.626259389

1.737541999

1.732545819

Next figures show the deformation of the ball B(z,r), centered at = with radius r, by the polynomials (31) and
(35). Figures 1 to 3 correspond to the deformation by the polynomial (31) and Figures 4 to 6 correspond to
4, and 5 we can observe that the ball is mapped onto
an ellipsoid, but in figures 3 and 6 the ball is not mapped onto an ellipsoid since in the considered ball the

the deformation by the polynomial (35). In Figures 1, 2,

mappings are not longer quasiconformal.

NSRSNERTI
NOSTRS
TR
N
Nk

222,
2255 ',;;;' %

%
o

%
55

BRI
AN
N
\

0yltrels

%
K
W
%%
%
5555

%
%

N
N

Acknowledgements

The first author acknowledges financial support from the Foundation for Science and Technology (FCT) via
the post-doctoral grant SFRH/BPD /66342/2009. The second author’s research is supported by FEDER funds
through COMPETE-Operational Programme Factors of Competitiveness (“Programa Operacional Factores de
Competitividade"i£ji£fj) and by Portuguese founds through the Center for Research and Development in Math-
Portuguese Foundation for Science and Technology
(“FCT-Fundacio para a Ciéncia e a Tecnologia"i£ii£;), within project PEst-C/MAT /UI4106/2011 with COM-

ematics and Applications (University of Aveiro) and the

PETE number FCOMP-01-0124-FEDER-022690.

References

[1] L. V. Ahlfors. Zur Theorie der Uberlagerungsflichen, Acta Math. 65 (1935), 157-194.
[2] L. V. Ahlfors. Lectures on quasiconformal mappings, Van Nostrand, 1966.

15




[3] R. Almeida and H. Malonek. On a Higher Dimensional Analogue of the Joukowski Transformation. AIP
Conf. Proc. 1048, 630-633 (2008).

[4] G. D. Anderson, M. K. Varnanamurthy and M. Vuorinen. Dimension-free quasiconformal distortion in
n-space, Trans. Amer. Math. Soc. 297 (1986), 687-706.

[5] G. D. Anderson, M. K. Varnanamurthy and M. Vuorinen. Sharp distortion theorems for quasiconformal
mappings, Trans. Amer. Math. Soc. 305 (1988), 95-111.

[6] G. D. Anderson, M. K. Varnanamurthy and M. Vuorinen. Inequalities for quasiconformal mappings in the
plane and space, Manuscript (1991), 1-43.

[7] K. Astala, T. Iwaniec and G. Martin. Elliptic partial differential equations and quasiconformal mappings in
the plane, Vol. 48 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 2009.

[8] 1. Cacdo. Constructive approzimation by monogenic polynomials. Ph.D. thesis, Universidade de Aveiro,
Departamento de Matemaética, 2004.

[9] I. Cacdo I, K. Giirlebeck and S. Bock. Complete Orthonormal Systems of Spherical Monogenics - A Con-
structive Approach. L. H. Son et al. (ed.), Methods of Complex and Clifford Analysis, SAS International
Publications, Delhi (2005), 241-260.

[10] P. Caraman, n-dimensional quasiconformal mappings, Editura Academiei Romhne; Bucharest, Abacus
Press;Tunebridge Wells Haessner Publishing, Inc.; Newfound- land, New Jersey, 1974.

[11] C. Cruz, M. 1. Falcdo, H. Malonek. 8D Mappings by Generalized Joukowski Transformations. Computational
Science and Its Applications - ICCSA 2011, Lecture Notes in Computer Science, Volume 6784 /2011, 358-373,
Santander (2011).

[12] R. Delanghe, R. Kraufshar and H. Malonek. Differentiability of functions with values in some real associative
algebras: approaches to an old problem. Bulletin de la Société Royale des Sciences de Liege, Vol. 70, No. 4-6,
231-249 (2001).

[13] F. W. Gehring. Quasiconformal mappings in space, Bull. Amer. Math. Soc. Volume 69, Number 2 (1963),
146-164.

[14] H. Grotzsch. Uber mdéglichst konforme Abbildungen yon schlichten Bereichen, Ber. Verh. Sichs. Akad. Wiss.
Leipzig 84 (1932), 114-120.

[15] K. Giirlebeck and H. Malonek. A hypercomplex derivative of monogenic functions in R"" and its applica-
tions. Complex Variables 39, 199-228 (1999).

[16] K. Giirlebeck and J. Morais. On mapping properties of monogenic functions, CUBO A Mathematical
Journal, Vol. 11, No. 1, pp. 73-100 (2009).

[17] K. Giirlebeck and J. Morais. On Local Mapping Properties of Monogenic Functions, K. Giirlebeck and C.
Konke (Editors): Proceedings 18th International Conference on the Applications of Computer Science and
Mathematics in Architecture and Civil Engineering, Weimar (2009).

[18] K. Giirlebeck and J. Morais. Local properties of monogenic mappings, AIP Conference Proceedings, "Nu-
merical analysis and applied mathematics", pp. 797-800 (2009).

[19] K. Giirlebeck and J. Morais. Geometric characterization of M-conformal mappings, Geometric Algebra
Computing: in Engineering and Computer Science, Bayro-Corrochano, Eduardo; Scheuermann, Gerik
(Eds.), Springer, 1st Edition, pp. 327-342, 2010.

[20] V. Kolehmainen, M. Lassas and P. Ola. The inverse conductivity problem with an imperfectly known bound-
ary, STAM Journal on Applied Mathematics, 66 (2005), pp. 365-383 (electronic).

[21] V. Kolehmainen, M. Lassas and P. Ola. Electrical impedance tomography problem with inaccurately known
boundary and contact impedances, Medical Imaging, IEEE Transactions on, 27 (2008), pp. 1404-1414.

16



[22] V. Kolehmainen, M. Lassas and P. Ola. Calderdn’s inverse problem with an imperfectly known boundary
and reconstruction up to a conformal deformation, SIAM J. Math. Anal., 42 (2010), pp. 1371-1381.

[23] V. Kolehmainen, M. Lassas, P. Ola and S. Siltanen. Recovering boundary shape and conductivity in electrical
impedance tomography, Inverse Problems and Imaging, (2012).

[24] R. Kraufhar and H. Malonek. A characterization of conformal mappings in R* by a formal differentiability
condition. Bulletin de la Société Royale des Sciences de Liege, Vol. 70, No. 1, 35-49 (2001).

[25] M. A. Lavrent’ev. Sur une classe de representatations continues, Mat. Sb. 42 (1935), 407-427.

[26] M. A. Lavrent’ev. Sur un critere differentiel des transformations homéomorphes des domains a trois di-
mensions, Dokl. Acad. Nank SSSR 20 (1938), 241-242.

[27] H. Leutwiler, Quaternionic analysis in R® versus its hyperbolic modification, Brackx, F., Chisholm, J.S.R.
and Soucek, V. (ed.). NATO Science Series II. Mathematics, Physics and Chemistry, vol. 25, Kluwer Aca-
demic Publishers, Dordrecht, Boston, London, 2001, pp. 193-211.

[28] J. Liouville. Extension au cas des trois dimensions de la question du tracé géographique, Note VI, pp. 609
- 617 in: G. Monge: Applications de 'analyse & la géométrie, Bachelier, Paris 1850.

[29] H. Malonek. Power series representation for monogenic functions in R™T! based on a permutational prod-
uct. Complex Variables Theory Appl., 15, 181-191 (1990).

[30] H. Malonek. Contributions to a geometric function theory in higher dimensions by Clifford analysis methods:
Monogenic functions and M-conformal mappings, in: Clifford Analysis and its Applications ed. F. Brackx
et al., Kluwer, NATO Sci. Ser. II, Math. Phys. Chem. 25, 213-222 (2001).

[31] H. Malonek and R. Almeida. A note on a generalized Joukowski transformation. Applied Mathematics
Letters, 23, 1174-1178 (2010).

[32] H. Malonek, K. Giirlebeck, P. Cerejeiras, and U. Kdhler. A quaternionic Beltrami type equation and the
existence of local homeomorphic solutions. Applied Mathematics Letters, ZAA, 20, 17-34 (2001).

[33] J.B. Maricato, J.M. Machado and M.F. Borges. Quasiconformal transformations and hypercomplex func-
tions, International Journal of Applied Math., 20 (2007), 691-702.

[34] I. Mitelman and M. Shapiro, Differentiation of the Martinelli-Bochner integrals and the notion of hyper-
derivability, Mathematische Nachrichten 172, no. 1, 1995, pp. 211-238.

[35] J. Morais. Approzimation by homogeneous polynomial solutions of the Riesz system in R3, Ph.D. thesis,
Bauhaus-Universitit Weimar, 2009, 157 pages.

[36] J. Morais and K. Giirlebeck. Real-Part Estimates for Solutions of the Riesz System in R3, Complex Vari-
ables and Elliptic Equations, 18 pp, doi: 10.1080,/17476933.2010.504838.

[37] S. Rickman. Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete 26, Springer-
Verlag, Berlin - Heidelberg - New York, 1993.

[38] M. Riesz. Sur les fonctions conjugués. Math. Z., 27, 218445244 (1927).

[39] G. Sansone. Orthogonal Functions. Pure and Applied Mathematics, Vol. IX. Interscience Publishers, New
York, 1959.

[40] A. Sudbery. Quaternionic analysis. Math. Proc. Cambridge Phil. Soc. 85: 199-225 (1979).

[41] O. Teichmiiller. Untersuchungen iber konforme und quasikonforme Abbildung, Deutsche Math. 3 (1938),
621-678.

[42] J. Viisald. On quasiconformal mappings of a ball, Ann. Acad. Sci. Fenn. Ser. A T Math. 304 (1961), 1-17.

[43] J. Viisélad. Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics 229 (1971),
Springer-Verlag.

17



[44] M. Vuorinen. Conformal Geometry and Quasiregular Mappings, Lecture Notes in Mathematics 1319 (1988),
Springer-Verlag.

[45] V. A. Zorich, The global homeomorphism theorem for space quasiconformal mappings, its development and
related open problemsz M. Vuorinen (ed.), Quasiconformal Space Mappings, Lecture Notes in Mathematics,
1508 (1992) pp. 1324A5148.

18



